قسررت وزارة التعليم تدريس هذا الكتاب وطبعه على نفقتها

المملكة العربية السعودية

ریاضیات ۲

التعليم الثانوي (نظام المقررات)

(مسار العلوم الطبيعية)

قام بالتأليف والمراجعة فريق من المتخصصين

ح وزارة التعليم ، ١٤٣٩هـ

فهرسة مكتبة الملك فهد الوطنية أثناء النشر وزارة التعليم رياضيات ٦ التعليم الثانوي نظام المقررات (مسار العلوم الطبيعية). وزارة التعليم. – الرياض ، ١٤٣٩هـ ١٨٨ ص ؛ ٥ , ٢٧ × ٢٧ سم ردمك : ٢ – ٢٦٢ – ٨٠٥ – ٣٠٠ – ٩٧٨ ١ – الرياضيات – مناهج – السعودية ٢ – التعليم الثانوي – مناهج – السعودية أ. العنوان ديوى ٢ ، ٥٧٥ / ٣٧٥

رقم الإيداع : ۱٤٣٩/٩٥٢٥ ردمك : ٢ - ٦٦٢ - ٥٠٨ - ٦٠٣ - ٩٧٨

حقوق الطبع والنشر محفوظة لوزارة التعليم www.moe.gov.sa

مواد إثرائية وداعمة على "منصة عين"

تواصل بمقترحاتك لتطوير الكتاب المحرسي

FB.T4EDU.COM

01.SA.MATH6.SE.Intro.indd 2 03/03/2020 10:22 AM

2021 - 1443

الحمد لله والصلاة والسلام على نبينا محمد وعلى آله وصحبه أجمعين، وبعد:

تعد مادة الرياضيات من المواد الدراسية الأساسية التي تهيّئ للطالب فرص اكتساب مستويات عُليا من الكفايات التعليمية، مما يتيح له تنمية قدرته على التفكير وحل المشكلات، ويساعده على التعامل مع مواقف الحياة وتلبية متطلباتها.

ومن منطلق الاهتمام الذي توليه حكومة خادم الحرمين الشريفين بتنمية الموارد البشرية، وعيًا بأهمية دورها في تحقيق التنمية الشاملة، كان توجه وزارة التعليم نحو تطوير المناهج الدراسية وفي مقدمتها مناهج الرياضيات، بدءًا من المرحلة الابتدائية، سعيًا للارتقاء بمخرجات التعليم لدى الطلاب، والوصول بهم إلى مصاف أقرانهم في الدول المتقدمة.

وتتميز هذه الكتب بأنها تتناول المادة بأساليب حديثة، تتوافر فيها عناصر الجذب والتشويق، التي تجعل الطالب يقبل على تعلمها ويتفاعل معها، من خلال ما تقدمه من تدريبات وأنشطة متنوعة، كما تؤكد هذه الكتب على جوانب مهمة في تعليم الرياضيات وتعلمها، تتمثل فيما يأتي:

- الترابط الوثيق بين محتوى الرياضيات وبين المواقف والمشكلات الحياتية.
 - و تنوع طرائق عرض المحتوى بصورة جذابة مشوقة.
 - إبراز دور المتعلم في عمليات التعليم والتعلم.
- الاهتمام بالمهارات الرياضية، والتي تعمل على ترابط المحتوى الرياضي وتجعل منه كلًا متكاملًا، ومن بينها: مهارات التواصل الرياضي، ومهارات الحس الرياضي، ومهارات جمع البيانات وتنظيمها وتفسيرها، ومهارات التفكير العليا.
- الاهتمام بتنفيذ خطوات أسلوب حل المشكلات، وتوظيف استراتيجياته المختلفة في كيفية التفكير في المشكلات الرياضية والحياتية وحلها.
 - الاهتمام بتوظيف التقنية في المواقف الرياضية المختلفة.
 - الاهتمام بتوظيف أساليب متنوعة في تقويم الطلاب بما يتناسب مع الفروق الفردية بينهم.

ولمواكبة التطورات العالمية في هذا المجال، فإن المناهج المطوَّرة والكتب الجديدة سوف توفر للمعلم مجموعة متكاملة من المواد التعليمية المتنوعة التي تراعي الفروق الفردية بين الطلاب، بالإضافة إلى البرمجيات والمواقع التعليمية، التي توفر للطالب فرصة توظيف التقنيات الحديثة والتواصل المبني على الممارسة، مما يؤكد دوره في عملية التعليم والتعلم.

ونحن إذ نقدّم هذه الكتب لأعزائنا الطلاب، لنأمل أن تحوز على اهتمامهم، وتلبي متطلباتهم وتجعل تعلمهم لهذه المادة أكثر متعة وفائدة.

لتهيئا	ة للفصل الأول	9 .
1-1	مقدمة في المتجهات	10
1-2	المتجهات في المستوى الإحداثي	18
1-3	الضرب الداخلي	26
	اختبار منتصف الفصل	32
1-4	المتجهات في الفضاء الثلاثي الأبعاد	33
1-5	الضرب الداخلي والضرب الاتجاهي للمتجهات في الفضاء	39
	دثيل الدراسة والمراجعة	44
	اختيار الفصل	49

الإحداثيات القطبية والأعداد المركبة

لفصل الثاني	التهيئة لل
52	2-1
لصورة القطبية والصورة الديكارتية للمعادلات	2-2
لأعداد المركبة ونظرية ديموافر	2-3
ليل الدراسة والمراجعة	د.
فتراد الفصل	_1

الفصل المتجهات **Vectors**

وفيعا رسياق

درست استعمال حساب المثلثات لحل المثلث.

رواالارتاد

- أجرى العمليات على المتجهات، وأمثلها في الأنظمة الإحداثية، الثنائية والثلاثية الأبعاد.
 - أجدُ مسقط متجه على متجه
- أكتب متجهًا باستعمال متجهي
- أجدُ الضرب الداخلي، والزاوية بين متجهين في الأنظمة الإحداثية الثنائية، والثلاثية
- أجدُ الضرب الاتجاهي لمتجهين في الفضاء، وأستعملُ الضرب القياسي الثلاثي؛ لإيجاد حجوم متوازيات السطوح.

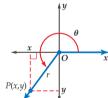
المادا الا

🧓 رياضة: تستعمل المتجهات لنمذجة مواقف حياتية، فمثلًا يمكن استعمالها لتحديد محصلة سرعة واتجاه حركة رمح رماه لاعب، إذا ركض إلى الأمَّام بسرعة 6m/s ، ورمى الرمح بسرعة 30m/s ، وبزاوية مقدارها °40 مع

قراءة سابقة: اقرأ عناوين الدروس والمفردات الأساسية في هذا الفصل، واستعملها للتنبؤ بما ستتعلُّمه في هذا الفصل.

التهيئة للفصل 1

مراجعة المفردات

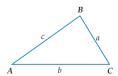

صيغة المسافة في المستوى الإحداثي (Distance Formula in The Coordinate Plane) المسافة بين النقطتين $A(x_1,y_1), B(x_2,y_2)$ هي $AB = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

صيغة إحداثيًّي منتصف قطعة مستقيمة في المستوى (Midpoint Formula in The Coordinate Plane) الإحداثي \overline{AB} : إذا كان $B(x_2\,,y_2)$ ، $A(x_1\,,y_1)$ فإن إحداثيً نقطة منتصف $M\left(\frac{x_1+x_2}{2}\,,\frac{y_1+y_2}{2}\right)$

النسبة المثلثية (Trigonometric Ratio) نسبة تقارن بين طولَي ضلعين في المثلث القائم الزاوية.

الدوال المثلثية للزوايا (Trigonometric Functions of Angels)

P(x,y) لتكن θ زاويةٌ مرسومةٌ في الوضع القياسي، وتقع النقطة r على ضلع انتهائها. باستعمال نظرية فيثاغورس يمكن إيجاد r (المسافة من النقطة P إلى نقطة الأصل) باستعمال الصيغة $r = \sqrt{x^2 + y^2}$ كما يأتى:


$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}, x \neq 0 \csc \theta = \frac{r}{y}, y \neq 0$$

$$\sec \theta = \frac{r}{x}, x \neq 0 \cot \theta = \frac{x}{y}, y \neq 0$$

(Law of Cosines) قانون جيوب التمام

إذا كانت أضلاع ΔABC التي أطوالها: $a,\,b,\,c$ تقابل الزوايا ذات القياسات $A,\,B,\,C$ على الترتيب، فإن العلاقات الآتية تكون صحيحة:

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

قانون الجيوب (Law of Sines)

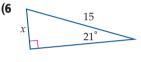
إذا كانت أضلاع $\triangle ABC$ التي أطوالها: a,b,c تقابل الزوايا ذات القياسات A,B,C على الترتيب، فإن العلاقات الآتية تكون صحيحة:

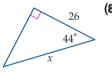
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
Many right Louisition

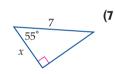
اختبارسريع

أوجد المسافة بين كل زوج من النقاط الآتية، ثم أوجد إحداثيَّي نقطةِ منتصف القطعة المستقيمة الواصلة بينهما.

$$(-5,3), (-5,8)$$
 (2


$$(1,4), (-2,4)$$
 (1


$$(-4, -1), (-6, -8)$$
 (4


$$(2, -9), (-3, -7)$$
 (3

أوجد قيمة x في كلِّ مما يأتي مقرِّبًا الناتج إلى أقرب عُشرٍ.

9) بالمون: أُطلق بالون يحتوي على هواء ساخن في الفضاء. إذا كان البالون مربوطًا بحبلين مشدودين يمسك بكلِّ منهما شخص يقف على سطح الأرض، والمسافة بين الشخصين 35 ft، بحيث كان قياس الزاوية بين كلِّ من الحبلين والأرض 40°، فأوجد طول كلِّ من الحبلين إلى أقرب جزء من عشرة.

أوجد جميع الحلول الممكنة لكل مثلث مما يأتي إن أمكن، وإذا لم يوجد حَلّ فاكتب "لا يوجد حَلّ " مقرِّبًا أطوال الأضلاع إلى أقرب عدد صحيح، وقياسات الزوايا إلى أقرب درجة.

$$a = 10, b = 7, A = 128^{\circ}$$
 (10

$$a = 15, b = 16, A = 127^{\circ}$$
 (11

$$a = 15, b = 18, A = 52^{\circ}$$
 (12

رفيما رسنتقء

والغربية

أجرى العمليات على

المتعامدتين.

المتجهات.

solar quantity

direction

resultant قاعدة المثلث triangle method

قاعدة متوازى الأضلاع parallelogram method

المتجه الصفري

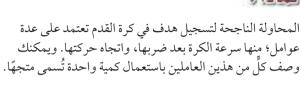
zero vector المركبات

components

المركبات المتعامدة

rectangular components

المفرادات كمية قياسية (عددية)


درست استعمال حساب المثلثات في حل المثلث. (مهارة سابقة)

المتجهات باستعمال مقياس الرسم، وأمثَلها هندسيًّا . أحلل المتجه إلى مركبتيه

أحل مسائل تطبيقية على

مقدمة في المتجهات Introduction to Vectors

المحاولة الناجحة لتسجيل هدف في كرة القدم تعتمد على عدة عوامل؛ منها سرعة الكرة بعد ضربها، واتجاه حركتها. ويمكنك

الكميات القياسية والكميات المتجهة يمكن وصف الكثير من الكميات الفيزيائية مثل الكتلة بقيمة عددية واحدة، وعندئذٍ تُسمِي <mark>كمية قياسية (عددية)</mark>، ويدل هذا العدد على مقدٍار الكمية أو قياسها. أما **المتجه** فهو كمية لها مقدار واتجاه؛ فمثلًا سرعة الكرة المتجهة نحوٍ المرمي جنوبًا تمثل كلًّا من: مقدار سرعة الكرة، واتجاه حركتها، ولذلك تُعتبر متجه والعدد المرتبط بمتجه يسمى كمية متجهة.

مـثال 1 تحديد الكميات المتجهة

حدّد الكميات المتجهة، والكميات القياسية (العددية) في كلِّ مما يأتي:

- a) يسير قارب بسرعة 15 mi/h في اتجاه الجنوب الغربي. بما أن لهذه الكمية اتجاهًا، إذن هي كميةٌ متجهةٌ.
- b) يسير شخص على قدميه بسرعة m/min جهة الغرب. بما أن لسرعة الشخص قيمة هي m/min 75 ، واتجاهًا للغرب؛ لذا فهي كمية متجهة.
- c قطعت سيارة مسافة قدرها 20km . بما أن لهذه الكمية قيمة وهي 20 km ، وليس لها اتجاه؛ إذن هذه المسافة كمية قياسية.

🔽 تحقق من فهمك

حدّد الكميات المتجهة ، والكميات القياسية (العددية) في كلِّ مما يأتي:

- 1A) تسير سيارة بسرعة h / mi / h ، وبزاوية °15 جهة الجنوب الشرقي.
 - 1B) هبوط مظلِّي رأسيًّا إلى أسفل بسرعة h . 12.5 mi / h
 - 1C) طول قطعةٍ مستقيمةٍ 5cm.

يمكن تمثيل المتجه هندسيًّا بقطعة مستقيمة لها اتجاه (قطعة مستقيمة متجهة)، أو سهم يُظهر كلًّا من المقدار والاتجاه. ويمثِّل الشكل المجاور القطعة المستقيمة المتجهة التي لها نقطة البداية A، ونقطة النهاية B. ويرمز لهذا المتجه بالرمز \overline{AB} أو \overline{a} أو \overline{a}

أما طول المتجه فهو عبارة عن طول القطعة المستقيمة التي تمثله، ففي الشكل المجاور، إذا كان مقياس الرسم هو 1 cm = 5 ft/s مإن طول المتجه \mathbf{a} ، ويُرمز له بالرمز $|\mathbf{a}|$ ، يساوي \mathbf{a} . 13 ft/s أو 2.6×5

يكون المتجه في <mark>الوضع القياسي</mark>. إذا كانت نقطة بداية المتجه هي نقطة الأصل ويعبّر عن التجاه المتجه بالزاوية التي يصَّنعها مع الاتجاه الأفقي (الاتجاه الموجب للمحور x). فمثلًا: اتجاه المتجه a هو 35°.

نقطة النهاية A نقطة البداية 1 cm = 3 ft/sec Ministry of Education

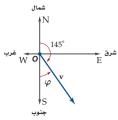
2021 - 1443

الكمية المتجهة vector quantity قطعة مستقيمة متجهة directed line segment نقطة البداية initial point نقطة النهابة terminal point الوضع القياسي standard position اتجاه المتجه طول المتجه (المقدار) magnitude الاتجاه الربعي quadrant bearing الاتجاه الحقيقي true bearing المتجهات المتوازية parallel vectors المتجهات المتساوية equal vectors المتجهان المتعاكسان opposite vectors المحصلة

إرشادات للدراسة

زاوية الاتجاه الحقيقي

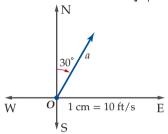
إذا أُعطي قياس زاوية بثلاثة أرقام، ولم تعك أي مركبات اتجاهية إضافية، فإنها زاوية اتجاه حقيقي. فمثلًا زاوية الاتجاه الحقيقي للمتجه V في الشكل المجاور هي 145°.


رشادات للدراسة

وحدةً لقياس القوّة، ويرمز

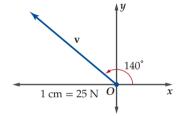
له بالحرف N، وهو عبارة عن القوّة التي تؤثر في جسم كتلته 1kg؛ لتكسبه تسارعًا ً مقداره 1m/s².

ويمكن التعبير عن اتجاه المتجه أيضًا باستعمال زاوية الاتجاه الربعي φ ، وتُقرأ فاي، وهي



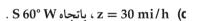
مثال 2 تمثيل المتجه هندسيًا

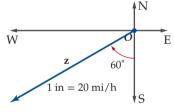
استعمل مسطرةً ومنقلةً؛ لرسم متجه لكلِّ من الكميات الآتية، واكتب مقياس الرسم في كل حالة:


. 030° باتجاه $a=20~{
m ft/s}$ (a

استعمل مقياس الرسم 1 cm = 10 ft/s ، وارسم سهمًا طوله 10 ÷ 20 ، أو 2 cm بزاوية قياسها °30 من الشمال، وفي اتجاه عقارب الساعة.

، بزاوية قياسها $^{\circ}$ 140 مع الاتجاه الأفقى. $v = 75 \, \mathrm{N}$


استعمل مقياس الرسم 25~N~ ، وارسم سهمًا طوله 3~ 5~ $\div~$ 75~ ، أو 3~ في الوضع القياسي، وبزاويةٍ قياسها 3~ الاتجاه الموجب للمحور 3~


تنييه(

الطول

يمكن أن يمثل طول المتجه مسافة، أو سرعة، أو قوة. وإذا مثل المتجه سرعة، فإن طوله لا يمثّل المسافة المقطوعة.

استعمل مقياس الرسم h / h = 20 mi / ا وارسم سهمًا طوله 0 = 1.5 in 0 + 0 و ارسم 0 أبر اوية قياسها 0 في اتجاه جنوب غرب .

🔽 تحقق من فهمك

استعمل مسطرة ومنقلة؛ لرسم متجه لكلِّ من الكميات الآتية، واكتب مقياس الرسم في كل حالة:

- . 065° ، باتجاه **(2A**
- . S 25° E ، باتجاه u = 15 mi/h (2B
- . بزاوية قياسها 80° مع الاتجاه الأفقى. $\mathbf{m} = 60\,\mathrm{N}$

عند إجرائك العمليات على المتجهات، فإنك تحتاج إلى الأنواع الشائعة الآتية من المتجهات:

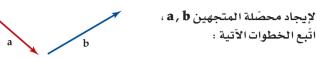
- المتجهات المتوازية لها الاتجاه نفسه، أو اتجاهان متعاكسان، وليس بالضرورة أن يكون لها الطول نفسه. فمثلًا في الشكل المجاور a | b | c | e | f
 - المتجهات المتساوية لها الاتجاه نفسه، والطول نفسه. ففي الشكل المجاور a, c ؛ لهما الطول والاتجاه نفساهما، لذا هما متساويان، ويعبَّر عنه بالرموز: a = c.

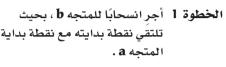
. لأن لهما اتجاهين مختلفين $a \neq d$, $|a| \neq |b|$ ؛ لأن لهما اتجاهين مختلفين

و أل قال م

المتجهان المتعاكسان لهما الطول نفسه، لكن اتجاهيهما متعاكسان. يكتب المتجه المعاكس للمتلجة a على العصورة a الصورة a - 2021 في الشكل المجاور e = -a.

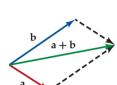
عند جمع متجهين أو أكثر يكون الناتج متجهًا، ويسمى المحصّلة. ويكون لمتجه المحصّلة التأثير نفسه الناتج عن تأثير المتجهين الأصليين عند تطبيقهما واحدًا تلو الآخر. ويمكن إيجاد المحصّلة هندسيًّا باستعمال قاعدة المثلث، أو قاعدة متوازى الأضلاع.


مفهوم أساسي إيجاد المحصلة

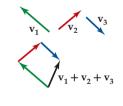

قاعدة المثلث

لإيجاد محصّلة المتجهين a,b، اتّبع الخطوتين الآتيتين:

- الخطوة 1 أجر انسحابًا للمتجه b ، بحيث تلتقي نقطة بدايته مع نقطة نهاية المتجه a .
- a, b محصلة المتجهين a, b هي المتجه المرسوم من نقطة بداية a إلى نقطة نهاية b .
- a b
- a b
- a + b


قاعدة متوازي الأضلاع

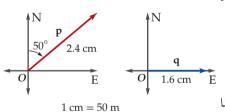
الخطوة 2 أكمل رسم متوازي الأضلاع الذي ضلعاه a, b.


> الخطوة 3 محصلة المتجهين هي المتجه الذي يُمثّله قطر متوازي الأضلاع .

إرشادات للدراسة

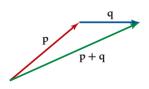
لمحصلة

لإيجاد محصلة أكثر من متجهين باستعمال قاعدة متوازي الأضلاع، يلزم إعادة الرسم أكثر من مرة؛ لذا من الأسهل في هذه الحالة استعمال طريقة مشابهة لقاعدة المثلث، وذلك بوضع نقطة بداية متجه عند نقطة نهاية المتجه الذي يسبقه وهكذا.

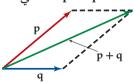

🥡 مثال 3 من واقع الحياة

إيجاد محصلة متجهين

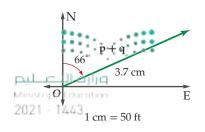
رياضة المشي: قطع عبد الله في سباق للمشي، مسافة m 120 باتجاه E °N 50° ، ثم مسافة m 80 في اتجاه الشرق. كم يبعد عبد الله عن نقطة البداية، وما هي زاوية الاتجاه الربعي؟


افترض أن المتجه p يمثِّل المشي $120\,\mathrm{m}$ في الاتجاه $150^\circ\mathrm{E}$ وأن p , q المتجه p يمثِّل المشي $120\,\mathrm{m}$ باتجاه الشرق. ارسم شكلًا يمثَّل $100\,\mathrm{m}$ باستعمال مقياس الرسم $100\,\mathrm{m}$.

استعمل مسطرة ومنقلة؛ لرسم سهم طوله $2.4\,\mathrm{cm}$ ؛ وارسم سهمًا ويصنع زاوية قياسها 50° شمال شرق؛ ليُمثّل المتجه p ، وارسم سهمًا آخر طوله p : $80 \div 80 \div 80$ في اتجاه الشرق؛ ليُمثّل المتجه p .

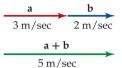

الطريقة 1 قاعدة المثلث

اعمل انسحابًا للمتجه ${\bf q}$ ، بحيث تلتقي نقطة بدايته مع نقطة نهاية المتجه ${\bf p}+{\bf q}$ ، ثم ارسم متجه المحصلة ${\bf p}+{\bf q}$ كما في الشكل أدناه.

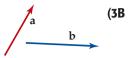

الطريقة 2 قاعدة متوازى الأضلاع

اعمل انسحابًا للمتجه ${\bf p}$ ، بحيث تلتقي نقطة بدايته مع نقطة بداية ${\bf p}$ ، ثم أكمل متوازي الأضلاع، وارسم قطره الذي يمثّل المحصلة ${\bf p}+{\bf q}$ ، كما في الشكل أدناه.

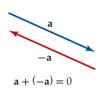
نحصل في كلتا الطريقتين على متجه المحصلة p+q نفسه. قس طول p+q باستعمال المسطرة، ثم قِس الزاوية التي يصنعها هذا المتجه مع الخط الرأسي كما في الشكل المجاور.


 $3.7\,\mathrm{cm}$ تجد أن طول المتجه يساوي $3.7\,\mathrm{cm}$ تقريبًا، ويُمثَّل $185\,\mathrm{m}$ $185\,\mathrm{m}$. $185\,\mathrm{m}$.

إرشادات للدراسة


المتجهات المتوازية في الاتجاه نفسه

محصّلة ناتج جمع متجهين أو أكثر لها الاتجاه نفسه، هو متجه طوله يساوي مجموع أطوال هذه المتجهات، واتجاهه هو اتجاه المتجهات الأصلية نفسه.



(3A

أوجد محصلة كل زوج من المتجهات الآتية مستعملًا قاعدة المثلث، أو متوازي الأضلاع. ثمّ حدّد اتجاهها بالنسبة للأفقي.

3C) ثعبة أطفال: رمى طفل كرةً صغيرةً في لعبة مخصصة للأطفال بسرعة 7 in/s ، باتجاه °310 ، فارتدت باتجاه °550 ، وبسرعة 4 in/s . أوجد مقدار محصلة حركة الكرة واتجاهها. (قرب طول المحصلة إلى أقرب بوصة، والاتجاه إلى أقرب درجة)

مفهوم أساسي ضرب المتجه في عدد حقيقي

. k ويتحدّد اتجاهه بإشارة k فإن طول المتجه k هو $|\mathbf{v}|$ ويتحدّد اتجاهه بإشارة k

- فإن اتجاه k هو اتجاه v نفسه. إذا كانت k>0
- . \mathbf{v} اتجاه \mathbf{v} هو عکس اتجاه \mathbf{v} ، فإن اتجاه

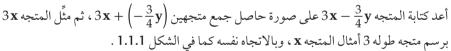
قراءة الرياضيات

إرشادات للدراسة

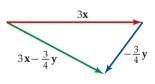
المتعاكسان

المتجهان المتوازيان

محصلة ناتج جمع متجهين


متوازيين متعاكسين، هو متجه طوله يساوي القيمة المطلقة للفرق بين طولي المتجهين، واتجاهه هو اتجاه الأكبر طولًا.

| k | تقرأ القيمة المطلقة للعدد الحقيقي k.


| v | تمثل طول المتجه v.

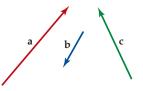
مـثال 4 العمليات على المتجهات

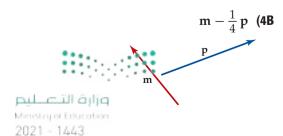
ارسم المتجه \mathbf{x} , \mathbf{y} ، حيث \mathbf{x} , \mathbf{y} متجهان كما في الشكل المجاور.

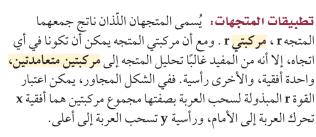
ولتمثيل المتجه $\frac{3}{4}$ ، ارسم متجهًا طوله $\frac{8}{4}$ طول y ، وفي اتجاه معاكس لاتجاه y كما في الشكل 1.1.2 ، ثم استعمل قاعدة المثلث؛ لرسم متجه المحصلة كما في الشكل 1.1.3 .

الشكل 1.1.3

الشكل 1.1.2



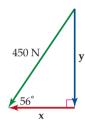

الشكل 1.1.1


🗹 تحقق من فهمك

ارسم المتجه الذي يُمثّل كلًّا مما يأتي:

$$a - c + 2b$$
 (4A)

يتطلب الضغط على مفتاح الكهرباء، لإشعال الضوء قوة مقدارها 3N. والقوة التي تؤثر بها الجاذبية الأرضية في الشخص تعادل 600N تقريبًا. والقوة المبدولة من لاعب رفع أثقال


تساوى 2000 N تقريبًا.

🧌 مثال 5 من واقع الحياة

تحليل القوة إلى مركبتين متعامدتين

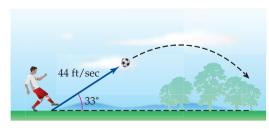
قص العشب: يدفع علي عربة قصِّ العشب بقوة مقدارها $450\,\mathrm{N}$ ، وبزاويةٍ قياسها 56° مع سطح الأرض.

ارسم شكلًا يوضِّح تحليل القوة التي يبذلها علي إلى مركبتين متعامدتين.
 يمكن تحليل قوة الدفع إلى مركبتين؛ أفقية x إلى الأمام ورأسية
 إلى أسفل كما في الشكل أدناه.

b) أوجد مقدار كلِّ من المركبتين؛ الأفقية والرأسية للقوة.

تكوّن كلٌّ من القوة ومركبتاها الأفقية والرأسية مثلثًا قائمَ الزاوية. استعمل تعريف الجيب، أو جيب التمام؛ لإيجاد مقدار كل قوة منهما.

$$\sin 56^{\circ} = \frac{|y|}{450}$$
 $\cos 56^{\circ} = \frac{|x|}{450}$


$$|\mathbf{y}| = 450 \sin 56^\circ$$
 $y : x خُل بالنسبة إلى $|\mathbf{x}| = 450 \cos 56^\circ$$

$$|\mathbf{y}| pprox 373$$
 ועד ועל ה ווב וועל וועל איז וועל איז וועל וועל איז וועל איז וועל איז וועל איז וועל איז וועל איז וועל וועל איז וועל א

مقدار المركبة الأفقية 252 N تقريبًا، ومقدار المركبة الرأسية 373 N تقريبًا.

تحقق من فهمك

5) كرة قدم: يركل لاعبٌ كرة قدمٍ من سطح الأرض بسرعةٍ مقدارها 44 ft/s ، وبزاويةٍ قياسها 33° مع سطح الأرض كما في الشكل أدناه.

(B) أوجد مقدار كلِّ من المركبتين الأفقية والرأسية للسرعة .

تدرب وحل المسائل

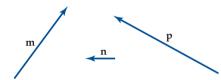
حدِّد الكميات المتجهة والكميات القياسية في كلِّ مما يأتي: (مثال 1)

- 1) طول محمد 125cm.
- 20 m^2 مساحة مربع (2
- 3) يركض غزال بسرعة 15 m/s باتجاه الغرب.
 - 4 المسافة التي قطعتها كرة قدم 4
 - 5) إطار سيارة وزنه 7kg معلق بحبل.
- 6) رمي حجر رأسيًّا إلى أعلى بسرعة 50 ft/s.

استعمل المسطرة والمنقلة؛ لرسم متجه لكلِّ من الكميات الآتية، ثم اكتب مقياس الرسم في كل حالة. (مثال 2)

- 205° ، باتجاه، h = 13 in/s (7
- $N 70^{\circ} W$ باتجاه، g = 6 km/h (8
- وبزاويةٍ قياسها 300° مع الأفقى. j = 5 ft/s (9
- وبزاويةٍ قياسها $^{\circ}$ 35 مع الأفقي. $d=28~{\rm km}$
 - $S 55^{\circ} E$ ، باتجاه ، R = 40 m (11
 - 030° باتجاه، 'n = 32 m/s (12

أوجد محصلة كل زوج من المتجهات الآتية باستعمال قاعدة المثلث، أو قاعدة متوازي الأضلاع، قرِّب المحصلة إلى أقرب جزءٍ من عشرةٍ من السنتمتر، ثم حدّد اتجاهها بالنسبة للأفقي مستعملًا المسطرة، والمنقلة: (مثال 3)


- d (14 a (1
- m (16 h / k

17) ركوب الزوارق: غادر زورق أحد المواني باتجاه W °N 60 ، فقطع مسافة 12 ميلًا بحريًّا، ثم غيّر قائد الزورق اتجاه حركته إلى °E ، فقطع مسافة 15 ميلًا بحريًّا. أوجد بُعد الزورق، واتجاه حركته في موقعه الحالي بالنسبة إلى الميناء. (مثال 3)

حدّد مقدار المحصلة الناتجة عن جمع المتجهين، واتجاهها في كلِّ مما يأتى: (مثال 3)

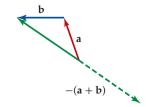
- 18N (18 للأمام، ثم 20N للخلف.
- 100 m (19 للشمال، ثم 350 للجنوب.
 - 17 mi (20 شرقًا، ثم 16 mi جنوبًا.
- 9.8 m/s² مع الأفقي، ثم $15 \, \mathrm{m/s^2}$ إلى الأسفل.

استعمل المتجهات الآتية؛ لرسم متجه يمثِّل كل عبارة مما يأتي: (مثال 4)

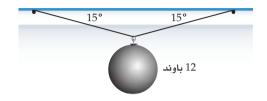
- m 2n (22)
- $4n + \frac{4}{5}p$ (23)
- p + 2n 2m (24)
- $m 3n + \frac{1}{4}p$ (25)

ارسم شكلًا يوضِّح تحليل كل متجه مما يأتي إلى مركبتيه المتعامدتين، ثم أوجد مقدار كلِّ منهما. (مثال 5)

- . باتجاه °310 مع الأفقي. $2\frac{1}{8}$ in/s (26
 - 1.5 cm (27 ، باتجاه 1.5 cm
 - . 255° باتجاه، $\frac{3}{4}$ in/min (28



- 29) تنظيف: يدفع حسن عصا مكنسة التنظيف بقوة مقدارها 190N ، وبزاوية قياسها °35 مع سطح الأرض كما في الشكل المجاور. (مثال 5)
- ارسم شكلًا يوضِّح تحليل هذه القوة إلى مركبتيها المتعامدتين.
- b أوجد مقدار كلِّ من المركبة الأفقية والمركبة الرأسية.
- 30) لعب أطفال: يدفع محمد عربة أخته بقوة مقدارها 100N، وباتجاه °31 مع الأفقي، أوجد مقدار المركبة الرأسية للقوة إلى أقرب عدد صحيح.
 - 31) **لا تمثيلات متعددة:** في هذه المسألة ستستقصي ضرب متجه في عدد حقيقي.
- بيانيًا: ارسم المتجه a على المستوى الإحداثي، بحيث تكون نقطة بدايته عند نقطة الأصل. واختر قيمة عددية لِـ k، ثم ارسم متجهًا ناتجًا عن ضرب k في المتجه الأصلي على المستوى الإحداثي نفسه. وكرّر العملية مع أربعة متجهات أخرى k, k واستعمل قيمة k نفسها في كل مرة.
 - ليانات السخ الجدول أدناه في دفترك، ثم اكتب البيانات المناسبة داخله لكل متجه رسمته في الفرع a.


المتجه	نقطة النهاية للمتجه	نقطة النهاية للمتجه مضروبًا في العدد k
a		
b		
С		
d		
e		

c تحليليًّا: إذا كانت (a, b) نقطة النهاية للمتجه a ، فما إحداثيات نقطة النهاية للمتجه ka ؟

المتجه الموازن هو متجه يساوي متجه المحصلة في المقدار ويعاكسه في الاتجاه، بحيث إن ناتج جمع متجه المحصلة مع المتجه الموازن يساوى المتجه الصفرى، والمتجه الموازن للمتجه a+b هو (a+b)

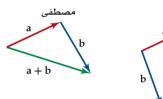
- (32) أوجد طول واتجاه المتجه الموازن للمتجهين: $a=15~{
 m mi/h}$ ماتجاه $^{\circ}$ 045° ماتجاه $^{\circ}$ 045° ماتجاه مار
- **33) كرة حديدية:** عُلِّقت كرة حديدية بحبلين متساويين في الطول كما في الشكل أدناه.

- لان أيدًا كانت T_1,T_2 تُمثّلان قوتَي الشدِّ في الحبلين، وكانت T_1,T_2 ، فارسم شكلًا يُمثّل وضع التوازن للكرة. $T_1=T_2$
- $T_1 + T_2$ أعد رسم الشكل باستعمال قاعدة المثلث لتجد (**b**
- استعمل الشكل في الفقرة ${f b}$ وحقيقة أن محصلة ${f T}_1+{f T}_2$ هي المتجه الموازن لوزن الكرة؛ لحساب مقدار كلِّ من ${f T}_1$, ${f T}_2$

أوجد طول كل متجه واتجاهه مما يأتي بمعلومية مركبتيه الأفقية والرأسية، والمدى الممكن لزاوية كلِّ منها:

- . $90^{\circ} < \theta < 180^{\circ}$ ، 2.28 in الأفقية 0.32 in الأفقية (34
 - . $0^{\circ} < \theta < 90^{\circ}$ ، 4.2 ft الرأسية 3.1 ft الأفقية
- . 270° < θ < 360° ، 9.7 cm الرأسية 2.6 cm الأفقية (36

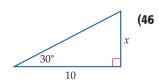
ارسم ثلاثة متجهات a, b, c ؛ لتوضح صحة كل خاصية من الخصائص الآتية هندسيًّا:

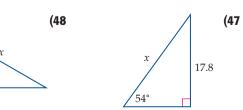

- a + b = b + a الخاصية الإبدالية (37)
- (a+b)+c=a+(b+c) الخاصية التجميعية (38
- k = 2, 0.5, -2 الخاصية التوزيعية $k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}$ ، حيث (39)

مرارة التعليم Ministry of Education 2021 - 1443

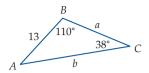
مسائل مهارات التفكير العليا

- 40) مسألة مفتوحة: لديك متجه مقداره 5 وحدات بالاتجاه الموجب لمحور x، حلّل المتجه إلى مركبتين متعامدتين على ألا تكون أيٌّ منهما أفقية أو رأسية.
- 41) تبرير: حدّد ما إذا كانت العبارة الآتية صحيحة أحيانًا، أو صحيحة دائمًا أو ليست صحيحة أبدًا، وبرِّر إجابتك. "من الممكن إيجاد مجموع متجهين متوازيين باستعمال طريقة متوازي الأضلاع".
 - $|a| + |b| \ge |a + b|$: نبریر: بفرض أن (42) a) عبّر عن هذه العبارة بالكلمات.
 - b) هل هذه العبارة صحيحة أم خاطئة؟ برِّر إجابتك .

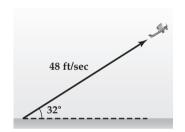

 - 43) اكتشف الخطأ: حاول كلُّ من حسين ومصطفى إيجاد محصلة المتجهين a, b. أيهما كانت إجابته صحيحة؟ برِّر إجابتك.



- 44) تبرير: هل من الممكن أن يكون ناتج جمع متجهين مساويًا لأحدهما؟ برِّر إجابتك.
- 45) اكتب: قارن بين قاعدتَى متوازي الأضلاع والمثلث في إيجاد محصلة متجهين.


مراجعة تراكمية

أوجد قيمة x في كلِّ مما يأتي مقرِّبًا الناتج إلى أقرب عُشر إذا لزم ذلك. (مهارة سابقة)


49 حُلّ المثلث الآتي مقرِّبًا الناتج إلى أقرب عُشر إذا لزم ذلك. (مهارة سابقة)

(مهارة سابقة) x المعادلة: $\sin 2x - \cos x = 0$ الجميع قيم (مهارة سابقة)

تدريب على اختبار

- 51) نزهة: قام حسان بنزهة خارج مخيمه الكشفى، فقطع مسافة 3.75 km في اتجاه الشرق من المخيم حتى وصل أحد المساجد، ثم سار شمالًا قاصدًا حديقةً عامةً، فقطع مسافة 5.6km ، حدّد موقع الحديقة بالنسبة للمخيم؟
- 52) طارت طائرة لعبة تسير باستعمال جهاز التحكم عن بُعد، بزاوية قياسها °32 مع الأفقى، وبسرعة 48 ft/s كما في الشكل أدناه. أيٌّ مما يأتي يُمثّل مقدار المركبتين الأفقية والرأسية لسرعة الطائرة على الترتيب؟

- 25.4 ft/s, 40.7 ft/s A
- 40.7 ft/s, 25.4 ft/s **B**
- 56.6 ft/s, 90.6 ft/s **C**
- 90.6 ft/s, 56.6 ft/s **D**

رفيما رساق:

المتجهات في المستوى الإحداثي

لمعادلة أثر الرياح ، وعادة ما يتم إجراء هذه الحسابات باستعمال المتجهات

Vectors in the Coordinate Plane

في المستوى الإحداثي.

مفهوم أساسي

المادا (9 درست العمليات على تؤثِّر الرياح في سرعة الطائرة واتجاه حركتها؛ لذا يستعمل قائد الطائرة المتجهات باستعمال مقياس مقاييس مدرّجة؛ لتحديد السرعة والاتجاه الذي يجب على الطائرة السير فيه؛ (1-1) (الدرس

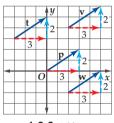
- أُجرى العمليات على المتجهات في المستوى الإحداثي، وأمثِّلها بيانيًّا.
- أكتب المتجه باستعمال متجهّى الوحدة.

المقردانة

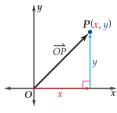
الصورة الإحداثية component form

> متحه الوحدة unit vector

متجها الوحدة القياسيان


standard unit vectors

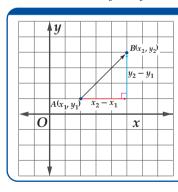
توافق خطى linear combination



المتجهات في المستوى الإحداثي في الدرس 1-1 ، تعلمت إيجاد طول (مقدار) المحصِّلة واتجاهها لمتجهين أو أكثر هندسيًّا باستعمال مقياس رسم. وبسبب عدم دقة الرسم، فإننا نحتاج إلى طريقة جبرية باستعمال نظام الإحداثيات المتعامدة للمواقف التي تحتاج إلى دقةٍ أكثر، أو التي تكون فيها المتجهات أكثر تعقيدًا.

ويمكن التعبير عن \overline{OP} في الوضع القياسي في المستوى الإحداثي كما في الشكل 1.2.1 بصورة وحيدة، وذلك \overline{OP} ، حيث إن x , y هما المركبتان المتعامدتان لـ \overline{OP} ؛ لذا P(x,y) ، حيث إن x هما المركبتان المتعامدتان لـ \overline{OP} ؛ لذا تُسمى (x, y) الصورة الإحداثية للمتجه.

الشكا، 1.2.2


الشكل 1.2.1

وحيث إن المتجهات التي لها الطول والاتجاه نفساهما متكافئة، فإنه بإمكاننا التعبير عن كثير من المتجهات بالإحداثيات نفسها، فمثلًا المتجهات p, t, v, w في الشكل 1.2.2 متكافئة، إذ يمكن التعبير عن أيِّ منها بالصورة (2, 2)، ولإيجاد الصورة الإحداثية لمتجهٍ مرسومٍ في وضع غير قياسيٌّ، استعمل إحداثيي نقطتَي بدايته ونهايته.

الصورة الإحداثية لمتجه

الصورة الإحداثية لـ \overline{AB} الذي نقطة بدايته $A(x_1,\,y_1)$ ، ونقطة نهايته $: AB(x_2, y_2)$ هي

$$\langle x_2 - x_1, y_2 - y_1 \rangle$$

مـثال 1 التعبير عن المتجه بالصورة الإحداثية

. B(3,-5) ، ونقطة نهايته (\overline{AB} ، الذي نقطة بدايته (A(-4,2) ، ونقطة نهايته (\overline{AB})

الصورة الإحداثية
$$\overrightarrow{AB}=\langle x_2-x_1,y_2-y_1
angle$$

$$(x_1, y_1) = (-4, 2), (x_2, y_2) = (3, -5)$$
 = $\langle 3 - (-4), -5 - 2 \rangle$

$=\langle 7, -7 \rangle$

🚺 تحقق من فهمك

أوجد الصورة الإحداثية لـ \overrightarrow{AB} المُعطاة نقطتا بدايته ونهايته في كلِّ ممَّا يأتي:

$$A(0,8), B(-9,-3)$$
 (1B $A(-2,-7), B(6,1)$ (1A

يمكن إيجاد طول المتجه في المستوى الإحداثي باستعمال قانون المسافة بين نقطتين.

قراءة الرياضيات

إرشادات للدراسة

يمكن التحقق بيانيًا من إجابة

الأضلاع كما في الشكل أدناه.

مثال 3 الفرع a، استعمال طريقة قاعدة متوازي

التحقق بيانيًّا

المعيار

يسمى مقدار المتجه أحيانًا معيار المتجه.

طول المتجه في المستوى الإحداثي

، (x_2,y_2) ، ونقطة نهايته (x_1,y_1) ، ونقطة نهايته (x_2,y_2) ، ونا كان (x_1,y_1) ، فإن طول (x_1,y_2) ، فإن طول (x_1,y_2)

$$|\mathbf{v}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

وإذا كانت $\langle a,b
angle$ هي الصورة الإحداثية للمتجه $oldsymbol{v}$ فإن :

$$|\mathbf{v}| = \sqrt{a^2 + b^2}$$

مثال 2 إيجاد طول متجه

. B(3,-5) الذي نقطة بدايته A(-4,2) ، ونقطة نهايته \overline{AB}

قانون المسافة بين نقطتين
$$|\overrightarrow{AB}| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$
 $(x_1,y_1)=(-4,2)$, $(x_2,y_2)=(3,-5)$ $=\sqrt{[3-(-4)]^2+(-5-2)^2}$ $=\sqrt{98}\approx 9.9$

 $|\overline{AB}| = \sqrt{7^2 + (-7)^2} = \sqrt{98}$ ؛ وعليه فإن: $|\overline{AB}| = \sqrt{7} + (-7)^2 = \sqrt{98}$

🚺 تحقق من فهمك

مفهوم أساسي

أوجد طول \overrightarrow{AB} المعطاة نقطتا بدايته ونهايته في كلِّ ممَّا يأتى:

$$A(0,8), B(-9,-3)$$
 (2B $A(-2,-7), B(6,1)$ (2A

تشبه عمليات الضرب في عدد حقيقي، والجمع والطرح على المتجهات، العمليات نفسها على المصفوفات.

مفهوم أساسي العمليات على المتجهات

إذا كان $\langle a=\langle\,a_1,a_2\rangle\,,\, {f b}=\langle\,b_1,b_2\,\rangle$ إذا كان

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$
 جمع متجهین

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$
 طرح متجهین

$$k\mathbf{a} = \langle ka_1, ka_2 \rangle$$
 ضرب متجهِ في عددِ حقيقيً

مـثال 3 العمليات على المتجهات

: $\mathbf{a}=\langle 2,5\rangle, \mathbf{b}=\langle -3,0\rangle, \mathbf{c}=\langle -4,1\rangle$ أوجد كلًّا مما يأتي للمتجهات

c + a (a

عوْض
$$\mathbf{c}+\mathbf{a}=\langle -4,1\rangle+\langle 2,5\rangle$$
 عوْض
$$=\langle -4+2,1+5\rangle=\langle -2,6\rangle$$
 اجمع المتجهین

b-2a (b

أعد كتابة الطرح كعملية جمع
$$b-2a=b+(-2)a \\ = \langle -3,0\rangle + (-2)\langle 2,5\rangle \\ = \langle -3,0\rangle + \langle -4,-10\rangle = \langle -7,-10\rangle$$
 اضرب متجهًا في عدد حقيقي، واجمع متحهين

🗹 تحقق من فهمك

التعليم : $\mathbf{a}=\langle 2,5\rangle$, $\mathbf{b}=\langle -3,0\rangle$, $\mathbf{c}=\langle -4,1\rangle$ التعليم المتجهات: $\mathbf{a}=\langle 2,5\rangle$

Manistry of Educat 2c + 4a - b (3C -3c (3B 4c + b (3A 2021 - 1443

↓y

0

 (x_2, y_2)

متجهات الوحدة: يُسمَّى المتجه الذي طوله 1 متجه الوحدة، ويرمز له بالرمز \mathbf{u} ، ولإيجاد متجه الوحدة \mathbf{u} الذي له نفس اتجاه المتجه ${
m v}$ ، اقسم المتجه ${
m v}$ على طوله $|{
m v}|$.

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{|\mathbf{v}|} \mathbf{v}$$

وبذلك يكون $\mathbf{v} = \mathbf{v}$. ونكون قد عبَّرنا عن المتجه غير الصفريّ \mathbf{v} في صورة حاصل ضرب متجه وحدة بنفس اتجاه v في عددٍ حقيقيٍّ.

إيجاد متجه وحدة له نفس الاتجاه لمتجه معطى

. $\mathbf{v} = \langle -2, 3 \rangle$ أوجد متجه الوحدة \mathbf{u} الذي له نفس اتجاه

$$\mathbf{v}$$
 متجه وحدة باتجاه $\mathbf{u}=rac{1}{|\mathbf{v}|}\mathbf{v}$ $=rac{1}{|\langle -2,3\rangle|}\langle -2,3
angle$

$$|\langle a, b \rangle| = \sqrt{a^2 + b^2}$$
 = $\frac{1}{\sqrt{(-2)^2 + 3^2}} \langle -2, 3 \rangle$

$$=\frac{1}{\sqrt{13}}\langle -2,3\rangle$$

اضرب متجه في عدد حقيقي
$$= \left\langle \frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right\rangle$$

انطق المقام
$$=\left\langle \frac{-2\sqrt{13}}{13}, \frac{3\sqrt{13}}{13} \right\rangle$$

ويليام روان هاميلتون

الريخ الرياضيات

(1805-1865)طور الرياضي الأيرلندي هاميلتون نظريةً في نظام الأعداد؛ لتوسيع الأعداد المركبة، ونشر العديد من المحاضرات فيها. يُذكر أن العديد من المفاهيم الأساسية في تحليل المتجهات يعتمد على هذه النظرية.

التحقق بما أن u تمثل حاصل ضرب v في عدد موجب فإن له اتجاه v نفسه. تحقَّق من أن طول u هو 1.

$$|\mathbf{u}|=\sqrt{\left(rac{-2}{\sqrt{13}}
ight)^2+\left(rac{3}{\sqrt{13}}
ight)^2}$$
 المسافة بين نقطتين $=\sqrt{rac{4}{13}+rac{9}{13}}$ المشط $=\sqrt{1}=1$ المشط

🔽 تحقق من فهمك

أوجد متجه الوحدة الذي له نفس اتجاه المتجه المُعطى في كلِّ ممَّا يأتي:

$$\mathbf{x} = \langle -4, -8 \rangle$$
 (4B $\mathbf{w} = \langle 6, -2 \rangle$ (4A

تنبيها

متجه الوحدة i

لا تخلط بين متجه الوحدة i ، والعدد التخيلي i ، حيث يُكتب متجه الوحدة بخطُّ داكن غير مائل i ، بينما يُكتب العدد التخيلي بخطُّ iغير داكن مائل

، $\mathbf{i} = \langle 1,0 \rangle$, $\mathbf{j} = \langle 0,1 \rangle$ بالرمزين y بالرمزين x والاتجاه الموجب لمحور المتجهي الوحدة بالاتجاه الموجب لمحور ، والاتجاه الموجب لمحور على الترتيب كما في الشكل 1.2.3 . كما يُسمَّى المتجهان i, j متجهَى الوحدة القياسيين.

الشكل 1.2.4

الشكل 1.2.3

ويمكن استعمال هذين المتجهين للتعبير عن أي متجه $\mathbf{v} = \langle a,b \rangle$ على الصورة $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ كما في الشكل 1.2.4 ويمكن و ذلك لأن:

2021 - 1443

$${f v} = \langle a,b \rangle$$
 الصورة الإحداثية ${f v} = \langle a,b \rangle$ أعد كتابة المتجه على صورة ناتج جمع متجهين $= \langle a,0 \rangle + \langle 0,b \rangle$ $= a \langle 1,0 \rangle + b \langle 0,1 \rangle$ $= a {f i}, \langle 0,1 \rangle = {f i}$ $= a {f i} + b {f j}$

مـثال 5 كتابة متجه على صورة توافق خطي لمتجهي الوحدة

إذا كانت نقطة بداية المتجه \overline{DE} هي (D(-2,3) ، ونقطة نهايته E(4,5) ، فاكتب \overline{DE} على صورة توافقٍ خطيً لمتجهَي الوحدة \mathbf{i} , \mathbf{j} .

أولًا، أوجد الصورة الإحداثية لِـ \overline{DE} .

الصورة الإحداثية
$$\overline{DE} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

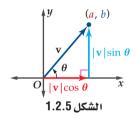
$$(x_1, y_1) = (-2, 3), (x_2, y_2) = (4, 5)$$
 = $\langle 4 - (-2), 5 - 3 \rangle$

$$=\langle 6,2\rangle$$

ثم أعد كتابة المتجه على صورة توافقٍ خطيٍّ لمتجهّي الوحدة.

الصورة الإحداثية
$$\overrightarrow{DE} = \langle 6, 2 \rangle$$

$$\langle a, b \rangle = a\mathbf{i} + b\mathbf{j}$$
 = $6\mathbf{i} + 2\mathbf{j}$


🗹 تحقق من فهمك

مـثال 6

اكتب المتجه \overline{DE} المُعطى نقطتا بدايته ونهايته على صورة توافق خطيٌّ لمتجهَى الوحدة i, j في كلِّ ممَّا يأتى :

$$D(-3, -8), E(7, 1)$$
 (5B)

$$D(-6,0)$$
, $E(2,5)$ (5A)

ويمكن كتابة المتجه $\mathbf{v} = \langle a,b \rangle$ ، باستعمال زاوية الاتجاه التي يصنعها \mathbf{v} مع الاتجاه الموجب لمحور \mathbf{x} . فمن الشكل 1.2.5 يمكن كتابة \mathbf{v} على الصورة الإحداثية ، أو على صورة توافق خطيًّ لمتجهّي الوحدة \mathbf{i} , \mathbf{j} كما يأتي:

الصورة الإحداثية
$$\mathbf{v} = \langle a, b \rangle$$

$$=\langle |\mathbf{v}|\cos\theta, |\mathbf{v}|\sin\theta\rangle$$

$$\mathbf{i}$$
, \mathbf{j} نوافق خطی من \mathbf{j} = $|\mathbf{v}| (\cos \theta) \mathbf{i} + |\mathbf{v}| (\sin \theta) \mathbf{j}$

إرشادات للدراسة

متجه الوحدة

 $\mathbf{v} = \langle |\mathbf{v}| \cos \theta, |\mathbf{v}| \sin \theta \rangle$ أن متجه الوحدة الذي له

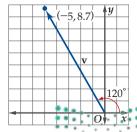
نفس اتجاه \mathbf{v} یأخذ الصورة $\mathbf{u} = \langle 1 \cos \theta, 1 \sin \theta \rangle$

 $=\langle\cos\theta,\sin\theta\rangle$

إيجاد الصورة الإحداثية

أوجد الصورة الإحداثية للمتجه v الذي طوله 10 ، وزاوية اتجاهه 120° مع الأفقى.

$$|\mathbf{v}|$$
, θ الصورة الإحداثية للمتجه \mathbf{v} بدلالة \mathbf{v} بدلالة \mathbf{v}


$$|\mathbf{v}| = 10$$
, $\theta = 120^{\circ}$ = $\langle 10 \cos 120^{\circ}, 10 \sin 120^{\circ} \rangle$

$$\cos 120^{\circ} = -\frac{1}{2}, \sin 120^{\circ} = \frac{\sqrt{3}}{2}$$
 $= \left\langle 10\left(-\frac{1}{2}\right), 10\left(\frac{\sqrt{3}}{2}\right)\right\rangle$

$$=\langle -5, 5\sqrt{3}\rangle$$

التحقق مثّل بيانيًّا: $\mathbf{v} = \langle -5, 5\sqrt{3} \rangle \approx \langle -5, 8.7 \rangle$ ، تجد أن قياس الزاوية التي يصنعها \mathbf{v} مع الاتجاه الموجب لمحور x هي °120 كما في الشكل المجاور ،

$$|\mathbf{v}| = \sqrt{(-5)^2 + (5\sqrt{3})^2} = 10$$

🗹 تحقق من فهمك

Manustry of Education
$$|\mathbf{v}| = 24, \, \theta = 210^{\circ}$$
 (6B)

$$|{f v}| = 8$$
, $\theta = 45^{\circ}$ (6A)

من الشكل (1.2.5) تستنتج أنه يمكن إيجاد زاوية اتجاه المتجه $\mathbf{v} = \langle a,b \rangle$ مع الاتجاه الأفقى (الموجب لمحور \mathbf{v} . tan $\theta = \frac{b}{a}$ أو $\tan \theta = \frac{|\mathbf{v}| \sin \theta}{|\mathbf{v}| \cos \theta}$ بحَلّ المعادلة المثلثية:

زوايا الاتحاه للمتحهات مـثال 7

أوجد زاوية اتجاه كلِّ من المتجهات الآتية مع الاتجاه الموجب لمحور x.

$$\mathbf{p} = 3\mathbf{i} + 7\mathbf{j} \ \ \mathbf{(a)}$$

لكل قيمة لـheta tan توجد زاويتان مختلفتان، بناءً

 $\tan \theta = \tan(\theta + 180)$ فإذا كانت قيمة θ موجبةً

> فإن heta زاوية تقع في الربع الأول أو الربع الثالث، وإذا

كانت قيمة đ tan سائبةً، فإن

زاوية تقع في الربع الثاني hetaأو الرابع، وتكون العلاقة

بين الزاويتين هي أن قياس إحداهما عبارة عن قياس

الأولى مجموعًا لها °180.

على العلاقة:

معادلة زاوية الاتجاه
$$\tan \theta = \frac{b}{a}$$

$$a = 3 \ , b = 7 \qquad \tan \theta = \frac{7}{3}$$

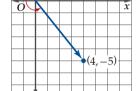
$$\theta$$
 حُل بالنسبة إلى $\theta = \tan^{-1} \frac{7}{3}$

من خلال الصورة الإحداثية للمتجه 3 = 7 ،
$$x = 3$$
 فإن المتجه يقع في الربع الأول، إذن:

استعمل الآلة الحاسبة
$$heta pprox 66.8^\circ$$

أي أن زاوية اتجاه المتجه p هي 66.8° تقريبًا كما في الشكل 1.2.6.

$$r = \langle 4, -5 \rangle$$
 (b)


معادلة زاوية الاتجاه
$$an heta = rac{b}{a}$$
 $a=4$, $b=-5$ $an heta = rac{-5}{4}$

$$heta$$
خُل بالنسبة إلى $heta= an^{-1}\left(-rac{5}{4}
ight)$

x = 4 > 0 ، y = -5 < 0 من خلال الصورة الإحداثية للمتجه فإن المتجه يقع في الربع الرابع وبالتالي زاويته

استعمل الآلة الحاسية
$$heta pprox -51.3^\circ$$

 $heta pprox 360^{\circ} - 51.3^{\circ} = 308.7^{\circ}$ بما أن r يقع في الربع الرابع، كما في الشكل 1.2.7 ، فإن:

الشكل 1.2.6

الشكل 1.2.7

🚺 تحقق من فهمك

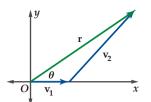
واتحاه حركة الكرة.

أوجد زاوية اتجاه كلً من المتجهين الآتيين مع الاتجاه الموجب لمحور x.

$$\langle -3, -8 \rangle$$
 (7B $-6i + 2j$ (7A

كرة قدم: يركض حارس مرمى في لعبة كرة القدم للأمام بسرعة 5 m/s ، ليرمي الكرة بسرعة 25 m/s ، بزاوية 00 مع الأفقي. أوجد محصلة السرعة،

تطبيق العمليات على المتجهات


🥡 مثال 8 من واقع الحياة

اللاعب \mathbf{v}_1 هي $\langle 5,0 \rangle$ ، وتكون الصورة الإحداثية لمتجه سرعة الكرة \mathbf{v}_2 هي: $\mathbf{v_2}$ الصورة الإحداثية للمتجه $\mathbf{v_2} = \langle |\mathbf{v_2}| \cos \theta, |\mathbf{v_2}| \sin \theta \rangle$ $= \langle 25 \cos 40^{\circ}, 25 \sin 40^{\circ} \rangle$ $|\mathbf{v}_2| = 25$, $\theta = 40^{\circ}$ $\approx \langle 19.2, 16.1 \rangle$

بما أن اللاعب يتحرك للأمام بشكل مستقيم، فإن الصورة الإحداثية لمتجه سرعة

. \mathbf{r} جبريًّا؛ لتجد متجه محصلة السرعة \mathbf{v}_2 ، \mathbf{v}_1 اجمع

متجه المحصلة
$$\mathbf{r}=\mathbf{v}_1+\mathbf{v}_2$$

$$=\langle 5,0\rangle +\langle 19.2,16.1\rangle$$

 $= \langle 24.2, 16.1 \rangle$

طول متجه المحصلة هو $29.1 \approx 24.2^2 + 16.1^2 = \sqrt{24.2^2 + 16.1^2}$. وتكون زاوية اتجاه المحصلة مع الأفقي هي θ حيث:

$$\langle a,b \rangle$$
= $\langle 24.2,16.1 \rangle$ ميث، $\tan \theta = \frac{b}{a}$ tan $\theta = \frac{16.1}{24.2}$

$$\theta = \tan^{-1} \frac{16.1}{24.2} \approx 33.6^{\circ}$$

أي أن محصلة سرعة الكرة هي 29.1 m/s تقريبًا، وتصنع زاوية قياسها 33.6° مع الأفقي تقريبًا.

🗹 تحقق من فهمك

8) كرة قدم: أوجد محصلة السرعة، واتجاه حركة الكرة إذا تحرك اللاعب إلى الأمام بسرعة 7m/s

تدرب وحل المسائل

أوجد الصورة الإحداثية، وطول \overrightarrow{AB} ، المُعطاة نقطتا بدايته ونهايته في كلِّ ممَّا يأتي: (المثالان 1,2)

$$A(-3, 1), B(4, 5)$$
 (1

$$A(2, -7), B(-6, 9)$$
 (2

$$A(10, -2), B(3, -5)$$
 (3

$$A(-2, 6), B(1, 10)$$
 (4

$$A(2.5, -3), B(-4, 1.5)$$
 (5

$$A\left(\frac{1}{2}, -9\right), B\left(6, \frac{5}{2}\right)$$
 (6

إذا كان: $\mathbf{f}=\langle 8,0 \rangle$, $\mathbf{g}=\langle -3,-5 \rangle$, $\mathbf{h}=\langle -6,2 \rangle$ فأوجد كلًا مما يأتي: (مثال 3)

$$4h - g$$
 (7

$$f + 2h$$
 (8

$$2f + g - 3h$$
 (9

$$f - 2g - 2h$$
 (10

$$h - 4f + 5g$$
 (11

$$4g - 3f + h$$
 (12)

أوجد متجه وحدة له اتجاه المتجه ٧ نفسه في كلِّ ممًّا يأتي: (مثال 4)

$$v = \langle -2, 7 \rangle$$
 (13

$$v = (9, -3)$$
 (14)

$$v = \langle -8, -5 \rangle$$
 (15)

$$\mathbf{v} = \langle 6, 3 \rangle$$
 (16

$$v = \langle -1, -5 \rangle$$
 (17)

$$\mathbf{v} = \langle 1, 7 \rangle$$
 (18

اكتب \overline{DE} ، المُعطاة نقطتا بدايته ونهايته في كلِّ ممَّا يأتي على صورة توافقٍ خطِّى لمتجهَى الوحدة i,j: (مثال 5)

$$D(4, -1), E(5, -7)$$
 (19

$$D(9, -6), E(-7, 2)$$
 (20

$$D(3, 11), E(-2, -8)$$
 (21)

$$D(9.5, 1), E(0, -7.3)$$
 (22)

$$D(-4, -6), E(9, 5)$$
 (23

$$D(\frac{1}{8},3), E(-4,\frac{2}{7})$$
 (24

أوجد الصورة الإحداثية للمتجه v ، المُعطى طوله وزاوية أتجاهه مع مع مع مع 2021 - 1443

الاتجاه الموجب لمحور x في كلِّ ممَّا يأتي: (مثال 6)

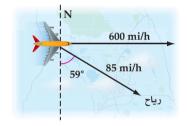
$$|\mathbf{v}| = 12, \, \theta = 60^{\circ}$$
 (25)

$$|\mathbf{v}| = 16, \, \theta = 330^{\circ}$$
 (26

$$|\mathbf{v}| = 4$$
, $\theta = 135^{\circ}$ (27)

$$|\mathbf{v}| = 15, \, \theta = 125^{\circ}$$
 (28)

أوجد زاوية اتجاه كلِّ من المتجهات الآتية مع الاتجاه الموجب (7 c) (مثال المحور x)


$$3i + 6j$$
 (29

$$-2i + 5j$$
 (30)

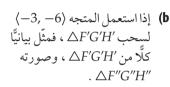
$$-4i - 3j$$
 (31)

$$\langle -5, 9 \rangle$$
 (32)

33) ملاحة جوية: تطير طائرة جهة الشرق بسرعةٍ مقدارها 600 mi/h ، وتهب الرياح بسرعةٍ مقدارها 85 mi/h باتجاه S59°E (مثال 8)

- a) أوجد محصِّلة سرعة الطائرة.
- b) أوجد زاوية اتجاه مسار الطائرة.
- 34) تجديف: يجدف شخص بقاربه في نهر باتجاه عمودي على الشَّاطَى بسرعة 5 mi/h ، ويؤثِّر فيه تيار مائي باتجاه مجرى النهر سرعته 3 mi/h
- a) أوجد السرعة التي يتحرك بها القارب إلى أقرب جزء من عشرة.
- **b** أوجد زاوية اتجاه حركة القارب بالنسبة للشاطئ إلى أقرب درجة.
- 35) ملاحة جوية: تطير طائرة بسرعة مقدارها 480 mi/h بالاتجاه N82°E ، وبسبب الرياح، فإن محصلة سرعة الطائرة بالنسبة لسطح الأرض أصبحت 518 mi/h باتجاه N 79°E . ارسم شكلًا يُمثِّل هذا الموقف.

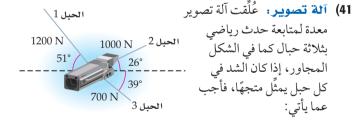
بيّن ما إذا كان \overrightarrow{AB} , \overrightarrow{CD} المُعطاة نقطتا البداية والنهاية لكلِّ منهما فيما يأتي متكافئين أو لا، وإذا كانا متكافئين، فأثبت أن $\overrightarrow{AB} = \overrightarrow{CD}$ ، وإذا كانا غير \overrightarrow{AB}


ذلك، فاذكر السبب.

$$A(3, 5), B(6, 9), C(-4, -4), D(-2, 0)$$
 (36)

$$A(1, -3), B(0, -10), C(11, 8), D(10, 1)$$
 (37)

 $\langle a,b\rangle$ انسحاب: يمكنك سحب شكل هندسي باستعمال المتجه (38 . y وذلك بإضافة a إلى الإحداثي x ، وإضافة b إلى الاحداثي a



أوجد نقطة نهاية ممكنة لكل متجه مما يأتي، إذا علِمتَ طوله ونقطة بدايته:

$$\sqrt{37}$$
 , $(-1, 4)$ (39)

$$10, (-3, -7)$$
 (40

- a) أوجد الصورة الإحداثية لكل متجه لأقرب عدد صحيح.
- b) أوجد الصورة الإحداثية لمتجه المحصلة المؤثر على آلة
 - **(c)** أو جد مقدار واتجاه محصلة القوى.
- 42) قوة: تؤثِّر قوة الجاذبية g وقوة الاحتكاك على صندوق في وضع السكون موضوع على سطح مائل، ويبيّن الشكل أدناه المركّبتين المتعامدتين للجاذبية الأرضية (الموازية للسطح والعمودية عليه). ما الوصف الصحيح لقوة الاحتكاك ليكون هذا الوضع ممكنًا؟ التعليم

2021 - 1443

פועבוטוני

مسائل مهارات التفكير العليا

- 43 تبرير: إذا كان a, b متجهين متوازيين، فعبِّر عن كلِّ من المتجهين بالصورة الإحداثية مبيِّنًا العلاقة بين a, b.
 - 44) تبرير: إذا أُعطيت طول متجه، ونقطة بدايته، فصف المحل الهندسي للنقاط التي يمكن أن تُمثِّل نقطة نهايته. (إرشاد: المحل الهندسي هو مجموعة من النقاط تحقق شرطًا معيَّنًا).

 ${\bf a}=\langle x_1,y_1\rangle,$ ${\bf b}=\langle x_2,y_2\rangle,$ ${\bf c}=\langle x_3,y_3\rangle$: إذا كان إذا كان فأثبت الخصائص الآتية

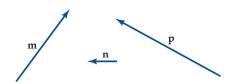
$$a+b=b+a (46)$$

$$(a + b) + c = a + (b + c)$$
 (47)

. حيث
$$k$$
 عدد حقيقي ، k ($a + b$) = $ka + kb$ (48

. حيث
$$k$$
 عدد حقيقي، $|k\mathbf{a}| = |k| \, |\mathbf{a}|$ (49

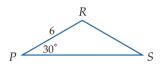
مراجعة تراكمية


- 50 دُمى أطفال: يقوم محمد بسحب دميته بقوة مقدارها 1.5N بواسطة نابض مثبَّت بها. (الدرس 1-1)
- إذا كان النابض يصنع زاوية °52 مع سطح الأرض، فأوجد مقدار كل من المركبتين الرأسية والأفقية للقوة.
- (b) إذا رفع محمد النابض، وأصبح يصنع زاوية قياسها °78 مع سطح الأرض، فأوجد مقدار كل من المركبتين الأفقية والرأسية للقوة.

استعمل مجموعة المتجهات الآتية لرسم متجه يمثِّل كلُّا مما يأتي:

(الدرس 1-1)

 $n - \frac{3}{4}m$ (51)


m - 3n (53)

- $\frac{1}{2}$ **p** + 3**n** (52)
- p + 2n m (54)

تدريب على اختبار

- (2, 5)، ونقطة نهايته (3, -4) ما طول المتجه الذي نقطة بدايته (2, 5)، ونقطة نهايته (4- (3, -4)
 - $\sqrt{82}$ C
- $\sqrt{2}$ A
- $\sqrt{106} \ \, {\bf D}$
- $\sqrt{26}$ B

- 56) ما مساحة المثلث المجاور، إذا علمت أن PR = RS ؟
- $18\sqrt{3}$ D $18\sqrt{2}$ C $9\sqrt{3}$ B $9\sqrt{2}$ A

1-3

رفيونا رسياق:

الضرب الداخلي Dot Product

الماذار

درست عمليتي الجمع والضرب في عدد حقيقي على المتجهات هندسيًا وجبريًّا. (الدرس2—1)

اوا الدرت له

أجدُ الضرب الداخلي
 لمتجهين، وأستعمله في
 إيجاد الزاوية بينهما.

المفردات.

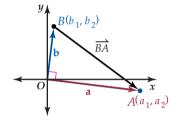
الضرب الداخلي dot product المتجهان المتعامدان Orthogonal vectors

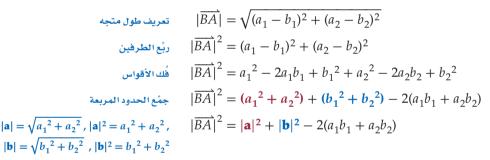
قراءة الرياضيات

الضرب القياسي يسمى الضرب الداخلي في

القياسي.

بعض الأحيان بالضرب


الشغل work



تحمل كلمة الشغل معانٍ متعددة في الحياة اليومية، إلا أن لها معنى محددًا في الفيزياء، وهو مقدار القوة المؤثرة في جسم مضروبة في المسافة، التي يتحركها الجسم في اتجاه القوة. ومثال ذلك: الشغل المبذول لدفع سيارة مسافة محددة. ويمكن حساب هذا الشغل باستعمال عملية على المتجهات تسمى الضرب الداخلي.

الضرب الداخلي تعلمت في الدرس 2- 1 عمليتي الجمع والضرب في عدد حقيقي على المتجهات. وفي هذا الدرس سوف تتعلم عملية ثالثة على المتجهات. إذا كان لديك المتجهان المتعامدان a, b في الوضع القياسي، وكان \overline{BA} المتجه الواصل بين نقطتي نهاية المتجهين كما في الشكل المجاور. فإنك تعلم من نظرية فيثاغورس أن \overline{BA} $|a|^2 + |a|^2 + |a|^2$.

. $|\overrightarrow{BA}|^2$ يجاد إيجاد وباستعمال مفهوم طول المتجه يمكنك إيجاد

 $a_1b_1+a_2b_2=0$ متكافئتان، إذا وفقط إذا كان $|\mathbf{a}|^2+|\mathbf{b}|^2-2(a_1b_1+a_2b_2)$ ، $|\mathbf{a}|^2+|\mathbf{b}|^2$ لاحظ أن العبارتين $a_1b_1+a_2b_2$ ، $|\mathbf{a}|^2+|\mathbf{b}|^2-2(a_1b_1+a_2b_2)$ ، $|\mathbf{a}|^2+|\mathbf{b}|^2-2(a_1b_1+a_2b_2)$ للمتجهين $a_1b_1+a_2b_2$ ، $a_1b_1+a_2b_2$ للمتجهين $a_1b_1+a_2b_2$. $a_1b_1+a_2b_2$ من $a_1b_1+a_2b_2$ للمتجهين $a_1b_1+a_2b_2$. $a_1b_1+a_2b_2$

مفهوم أساسي الضرب الداخلي لمتجهين في المستوى الإحداثي

: كالآتي ${f a}=\langle a_1,a_2\rangle$, ${f b}=\langle b_1,b_2\rangle$ كالآتي ${f a}\cdot{f b}=a_1b_1+a_2b_2$

لاحظ أنه خلافًا لعمليتي الجمع والضرب في عدد حقيقي على المتجهات، فإن حاصل الضرب الداخلي لمتجهين يكون عددًا وليس متجهًا. ويتعامد متجهان غير صفريين، إذا وفقط إذا كان حاصل ضربهما الداخلي صفرًا. ويقال للمتجهين اللّذين حاصل ضربهما الداخلي صفر: متجهان متعامدان .

مفهوم أساسي المتجهان المتعامدان

. ${f a} ullet {f b} = 0$ يكون المتجهان غير الصفريين ${f a}$ ، ${f b}$ متعامدين، إذا وفقط إذا كان

على الرغم من أن حاصل الضرب الداخلي للمتجه الصفري في أي متجه آخر يساوي الصفر، أي أن : $\langle 0,0 \rangle \cdot \langle a_1,a_2 \rangle = 0$ على الرغم من أن حاصل الضرب الداخلي للمتجه الصفري لا يعامد أي متجه آخر؛ لأنه ليس له طول أو اتجاه مو والتجاه و $\langle 0,0 \rangle \cdot \langle a_1,a_2 \rangle = 0$ على الرغم من أن حاصل الضوري المتجه الصفري المتجه الصفري المتجه الصفري المتجه آخر؛ لأنه ليس له طول أو اتجاه و $\langle 0,0 \rangle \cdot \langle a_1,a_2 \rangle = 0$ على المتجه الصفري المتجه الصفري المتجه الصفري المتجه الصفري المتجه آخر المتجه الصفري المتجه الصفري المتجه الصفري المتجه المتحبه الصفري المتجه الصفري المتجه المتحبة المتح

استعمال الضرب الداخلي في التحقق من تعامد متجهين

أوجد الضرب الداخلي للمتجهين ١١,٧ ، ثم تحقق مما إذا كانا متعامدين .

$$\mathbf{u} = \langle 2, 5 \rangle, \mathbf{v} = \langle 8, 4 \rangle$$
 (b $\mathbf{u} = \langle 3, 6 \rangle, \mathbf{v} = \langle -4, 2 \rangle$ (a

$$\mathbf{u} \cdot \mathbf{v} = 2(8) + 5(4)$$
 $\mathbf{u} \cdot \mathbf{v} = 3(-4) + 6(2)$

بما أن
$$\mathbf{v} = \mathbf{v}$$
 ، فإن \mathbf{v} ، فإن \mathbf{v} ، متعامدان كما هو معامدين كما هو موضّح في الشكل 1.3.1 . موضّح في الشكل 1.3.2 .

مـثال 1

أوجد الضرب الداخلي للمتجهين ٧ ، ١١ ، ثم تحقق مما إذا كانا متعامدين .

$$\mathbf{u} = \langle -2, -3 \rangle, \mathbf{v} = \langle 9, -6 \rangle$$
 (1B $\mathbf{u} = \langle 3, -2 \rangle, \mathbf{v} = \langle -5, 1 \rangle$ (1A)

إذا كانت \mathbf{u} , \mathbf{v} , \mathbf{w} متجهات، وكان k عددًا حقيقيًّا، فإن الخصائص الآتية صحيحة:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 الخاصية الإبدائية

$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 خاصیة التوزیع

$$k(\mathbf{u} \cdot \mathbf{v}) = k \mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot k \mathbf{v}$$
 خاصیة الضرب فی عدد حقیقی

$$\mathbf{u} = \mathbf{0}$$
 عن المتجه الصفرى خاصية الضرب الداخلي في المتجه الصفرى

$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$$
 العلاقة بين الضرب الداخلي وطول المتجه

البرهان

$$\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$$
إثبات أن:

$$\mathbf{u} = \langle u_1, u_2 \rangle$$
:افترض أن

الضرب الداخلي
$$\mathbf{u} \cdot \mathbf{u} = u_1^2 + u_2^2$$

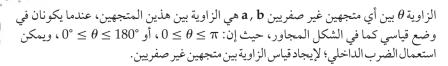
$$(u_1^2 + u_2^2)$$
 اکتب علی صورة مربع جذر $= (\sqrt{u_1^2 + u_2^2})^2$

$$\sqrt{u_1^2 + u_2^2} = |\mathbf{u}| \qquad = |\mathbf{u}|$$

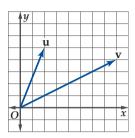
ستبرهن الخصائص الثلاث الأولى في الأسئلة 37-35

مـثال 2 استعمال الضرب الداخلي لإيجاد طول متجه

. $a = \langle -5, 12 \rangle$ استعمل الضرب الداخلى؛ لإيجاد طول


.
$$|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$
 : فإن ، $|\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a}$ بما أن

$$\mathbf{a} = \langle -5, 12 \rangle \qquad |\langle -5, 12 \rangle| = \sqrt{\langle -5, 12 \rangle} \cdot \langle -5, 12 \rangle$$
$$= \sqrt{(-5)^2 + 12^2} = 13$$


🗹 تحقق من فهمك

- صلى من المتجهات الآتية : استعمل الضرب الداخلي؛ لإيجاد طول كلِّ من المتجهات الآتية :

$$\mathbf{c} = \langle -1, -7 \rangle$$
 (2B $\mathbf{b} = \langle 12, 16 \rangle$ (2A

الشكل 1.3.1

الشكل 1.3.2

الزاوية بين متجهين

مضهوم أساسي

المتجهات المتعامدة والمتجهات المتوازية

ار شادات للدراسة

يقال لمتجهين: إنهما متعامدان، إذا كانت الزاوية بينهما °90. ويقال لمتجهين أنهما متوازيان، إذا كانت الزاوية بينهما °0 أو °180.

a, b هي الزاوية بين متجهين غير صفريين a, b هأن: a

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \, |\mathbf{b}|}$$

البرهان

إذا كان:
$$a$$
 , b , b أضلاع مثلث كما في الشكل أعلاه ، فإن:

قانون جيوب التمام
$$|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{b} - \mathbf{a}|^2$$

$$|\mathbf{u}|^2 = \mathbf{u} \cdot \mathbf{u}$$
 $|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}| |\mathbf{b}| \cos \theta = (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a})$

خاصية التوزيع للضرب الداخلى
$$|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 |\mathbf{a}| |\mathbf{b}| \cos \theta = \mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$$

$$|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta = |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{a}|^2$$

$$-2|\mathbf{a}||\mathbf{b}|\cos\theta = -2\mathbf{a} \cdot \mathbf{b}$$

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

بطرح
$$|\mathbf{a}|^2 + |\mathbf{b}|^2$$
 من الطرفين $-2|\mathbf{a}|\,|\mathbf{b}|\,$ على

 $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$

إيجاد قياس الزاوية بين متجهين

مـثال 3

أوجد قياس الزاوية θ بين المتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتي:

$$\mathbf{u} = \langle 6, 2 \rangle, \mathbf{v} = \langle -4, 3 \rangle$$
 (a

الزاوية بين متجهين
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

$$\mathbf{u} = \langle 6, 2 \rangle, \mathbf{v} = \langle -4, 3 \rangle$$
 $\cos \theta = \frac{\langle 6, 2 \rangle \cdot \langle -4, 3 \rangle}{|\langle 6, 2 \rangle| |\langle -4, 3 \rangle|}$

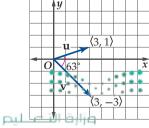
الضرب الداخلي لمتجهين، طول المتجه
$$ext{cos } heta = rac{-24+6}{\sqrt{40}\sqrt{25}}$$

بسّط
$$\cos \theta = \frac{-18}{10\sqrt{10}}$$

معكوس جيب التمام
$$heta=\cos^{-1}\frac{-18}{10\sqrt{10}}pprox 125^\circ$$

أي أن قياس الزاوية بين u, v هو °125 تقريبًا، كما في الشكل أعلاه.

$$\mathbf{u} = \langle 3, 1 \rangle, \mathbf{v} = \langle 3, -3 \rangle$$
 (b)


الزاوية بين متجهين
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

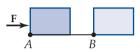
$$\mathbf{u} = \langle 3, 1 \rangle, \mathbf{v} = \langle 3, -3 \rangle$$
 $\cos \theta = \frac{\langle 3, 1 \rangle \cdot \langle 3, -3 \rangle}{|\langle 3, 1 \rangle| |\langle 3, -3 \rangle|}$

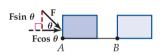
الضرب الداخلي لمتجهين، طول المتجه
$$\theta = \frac{9 + (-3)}{\sqrt{10}\sqrt{18}}$$

بسّط
$$\cos \theta = \frac{1}{\sqrt{5}}$$

معکوس جیب التمام
$$\theta = \cos^{-1} \frac{1}{\sqrt{5}} \approx 63^\circ$$

Ministry of Education 2021 - 1443 أي أن قياس الزاوية بين u, v هو °63 تقريبًا، كما في الشكل المجاور.


🚺 تحقق من فهمك


أوجد قياس الزاوية θ بين المتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتى:

$$\mathbf{u} = \langle 9, 5 \rangle, \mathbf{v} = \langle -6, 7 \rangle$$
 (3B)

$$\mathbf{u} = \langle -5, -2 \rangle$$
, $\mathbf{v} = \langle 4, 4 \rangle$ (3A)

من التطبيقات على الضرب الداخلي للمتجهات، حساب الشغل الناتج عن قوة، فإذا كانت F قوةً مؤثرةً في جسم لتحريكه من النقطة A إلى B كما في الشكل أدناه، وكانت F موازيةً لِـ \overline{AB} ، فإن الشغل W الناتج عن F يساوي مقدار . $W = |\mathbf{F}| |\overline{AB}|$ القوة \mathbf{F} مضروبًا في المسافة من A إلى B ، أو

ولحساب الشغل الناتج من قوة ثابتة F ، بأي اتجاه لتحريك جسم من النقطة A إلى B ، كما في الشكل المجاور، يمكنك استعمال الصيغة:

أي أنه يمكن حساب هذا الشغل بإيجاد الضرب الداخلي بين القوة الثابتة ${f F}$ ، والمسافة المتجهة ${ar AB}$ بعد كتابتهما في الصورة الإحداثية.

إرشادات للدراسة

وحدة قياس الشغل في النظام الإنجليزي هي قدم ـ رطل ، وفي النظام

المتري نيوتن-متر أو جول.

وحدات الشغل

🥡 مثال 4 من واقع الحياة حساب الشغل

سيارة: يدفع شخص سيارةً بقوةٍ ثابتةٍ مقدارها 120 N بزاوية °45 كما في الشكل المجاور، أوجد الشغل المبذول بالجول لتحريك السيارة 10m (بإهمال قوة الاحتكاك).

استعمل قاعدة الضرب الداخلي للشغل.

الصورة الإحداثية للقوة المتجهة F بدلالة مقدار القوة، وزاوية الاتجاه هي:

. $\langle 10, 0 \rangle$. الصورة الإحداثية لمتجه المسافة هي $\langle 120 \cos{(-45^{\circ})}, 120 \sin{(-45^{\circ})} \rangle$

 $W = \mathbf{F} \cdot \overrightarrow{AB}$ قاعدة الضرب الداخلي للشغل

> $= \langle 120 \cos (-45^\circ), 120 \sin (-45^\circ) \rangle \cdot \langle 10, 0 \rangle$ عوِّض

 $= [120 \cos (-45^{\circ})](10) \approx 848.5$ الضرب الداخلي

أي أن الشخص يبذل 848.5J من الشغل؛ لدفع السيارة.

▼ تحقق من فهمك

 4) تنظيف: يدفع إبراهيم مكنسة كهربائية بقوة مقدارها 25N، إذا كان قياس الزاوية بين ذراع المكنسة وسطح الأرض °60 ، فأوجد الشغل بالجول الذي بذا إبراهيم عند تحريك المكنسة مسافة 6m؟

تدرب وحل المسائل

أوجد حاصل الضرب الداخلي للمتجهين V, tt، ثم تحقق ممًّا إذا كانا متعامدين أم لا. (مثال 1)

$$u = (3, -5), v = (6, 2)$$
 (1

$$u = \langle 9, -3 \rangle, v = \langle 1, 3 \rangle$$
 (2

$$u = \langle 4, -4 \rangle, v = \langle 7, 5 \rangle$$
 (3

$$u = 11i + 7j$$
, $v = -7i + 11j$ (4

$$\mathbf{u} = \langle -4, 6 \rangle, \mathbf{v} = \langle -5, -2 \rangle$$
 (5

- 6) زيت الزيتون: يمثِّل المتجه $\langle 406, 297 \rangle = u$ أعداد علبتين مختلفتين من زيت الزيتون في متجر، ويمثِّل المتجه $\langle 27.5, 15 \rangle = v$ سعر العلبة من كلا النوعين على التُرتيب (مثال 1)
 - a) أوجد u v.
- **(b)** فسّر النتيجة التي حصلت عليها في الفرع a في سياق المسألة.

استعمل الضرب الداخلي؛ لإيجاد طول المتجه المعطى. (مثال 2)

$$\mathbf{r}=\langle -9,-4 \rangle$$
 (8 $\mathbf{m}=\langle -3,11 \rangle$ (7

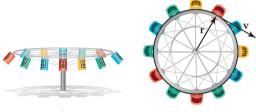
$$\mathbf{t} = \langle 23, -16 \rangle$$
 (10
$$\mathbf{v} = \langle 1, -18 \rangle$$
 (9

أوجد قياس الزاوية θ بين المتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتي، وقرّب الناتج إلى أقرب جزءٍ من عشرةِ. (مثال \mathbf{c})

$$u = (0, -5), v = (1, -4)$$
 (11

$$\mathbf{u} = \langle 7, 10 \rangle, \mathbf{v} = \langle 4, -4 \rangle$$
 (12

$$u = \langle -2, 4 \rangle, v = \langle 2, -10 \rangle$$
 (13


$$u = -2i + 3j$$
, $v = -4i - 2j$ (14)

- مخيم كشفي: غادر يوسف ويحيى مخيَّمَهما الكشفي للبحث عن حطب. إذا كان المتجه $\langle 3, -5 \rangle$ = v يُمثّل الطريق الذي سلكه يوسف، والمتجه $\langle 0, -7 \rangle$ = v يُمثّل الطريق الذي سلكه يحيى، فأو جد قياس الزاوية بين المتجهين. (مثال 3)
- 61) فيزياء: يدفع طارق برميلًا على أرض مستوية مسافة 1.5m بقوة مقدارها 534N؛ بزاوية °25، أوجد مقدار الشغل بالجول الذي يبذله طارق، وقرّب الناتج إلى أقرب عددٍ صحيح. (مثال 4)

أوجد متجهًا يعامد المتجه المعطى في كلِّ مما يأتي:

- $\langle -2, -8 \rangle$ (17)
 - (3,5) (18
 - (7, -4) (19
 - $\langle -1, 6 \rangle$ (20
- 21) عجلة دوًّارة: يعامد المتجه r في العجلة الدوارة في الوضع القياسي متجه السرعة المماسية v عند أيِّ نقطةٍ من نقاط الدائرة.

منظر أمامي

منظر علوي

- (a) إذا كان طول نصف قطر العجلة £20، وسرعتها ثابتة ومقدارها 40 ft/s ، فاكتب الصورة الإحداثية للمتجه r ، إذا كان يصنع زاويةً قياسها 35° مع الأفقي، ثم اكتب الصورة الإحداثية لمتجه السرعة المماسية في هذه الحالة قرّب الناتج إلى أقرب جزءٍ من مئةٍ.
- للطريقة التي يمكن استعمالها لإثبات تعامد المتجه r ، ومتجه السرعة باستعمال الصورتين الإحداثيتين اللتين أوجدتهما في الفرع a ؟ و أثبت أن المتجهين متعامدان.

إذا علمت كلَّا من v, u • v ، فأوجد قيمةً ممكنةً للمتجه u في كلِّ مما يأتي:

$$v = (3, -6), u \cdot v = 33$$
 (22)

$$v = \langle 4, 6 \rangle, u \cdot v = 38$$
 (23)

24) مدرسة: يسحب طالب حقيبته المدرسية بقوة مقدارها 100 N، إذا بذل الطالب شغلًا مقداره 1747 J، لسحب حقيبته مسافة m 31 ، فما قياس الزاوية بين قوة السحب والأفقي (بإهمال قوة الاحتكاك)؟

مرازة التعليم Ministry of Education 2021 - 1443

دة، أو مراجعة تراكمية

إذا علمت: أن $a=\langle 10,1\rangle$, $b=\langle -5,2.8\rangle$, $c=\langle \frac{3}{4},-9\rangle$ ، فأوجد كلًا مما يأتي: (الدرس 1-2)

$$b - a + 4c$$
 (39)

$$c - 3a + b$$
 (40)

$$2a - 4b + c$$
 (41)

أوجد زاوية اتجاه كلِّ من المتجهات الآتية مع الاتجاه الموجب لمحور x: (المدرس 2-1)

$$-i - 3j$$
 (42)

$$\langle -9, 5 \rangle$$
 (43)

$$\langle -7, 7 \rangle$$
 (44

تدريب على اختبار

- (45) ما قياس الزاوية بين المتجهين $\langle -1, -1 \rangle$ ، $\langle -9, 0 \rangle$?
 - 90° C
- 0° A
- 135° **D**
- 45° **B**
- وَذَا كَانَ: $\mathbf{s}=\langle 4,-3\rangle$, $\mathbf{t}=\langle -6,2\rangle$ افأيٌّ مما يأتي يمثِّل r ، حيث $\mathbf{s}=\langle 4,-3\rangle$ و الحج بالم
 - $\langle -14, 8 \rangle$ **C**
- $\langle 14, 8 \rangle$ A
- $\langle -14, -8 \rangle$ **D**
- $\langle 14, 6 \rangle$ **B**

اختبر كل زوج من المتجهات في كلِّ مما يأتي، من حيث كونها متعامدة، أو متوازية، أو غير ذلك.

$$\mathbf{u} = \left\langle -\frac{2}{3}, \frac{3}{4} \right\rangle, \mathbf{v} = \langle 9, 8 \rangle$$
 (25)

$$\mathbf{u} = \langle -1, -4 \rangle, \mathbf{v} = \langle 3, 6 \rangle$$
 (26

أوجد قياس الزاوية بين كل متجهين في كلِّ مما يأتي، قرّب الناتج إلى أقرب عُشرٍ.

$$u = i + 5j$$
, $v = -2i + 6j$ (27)

$$u = 4i + 3j$$
, $v = -5i - 2j$ (28)

29) النقاط: (2, 3), (4, 7), (8, 1) تُمثِّل رؤوس مثلثٍ، أوجد قياسات زواياه باستعمال المتجهات.

إذا علمت كلًّا من $|\mathbf{v}|$ \mathbf{u} والزاوية θ بين المتجهين \mathbf{u} ، فأوجد قيمةً ممكنةً للمتجه \mathbf{v} ، قرّب الناتج إلى أقرب جزءٍ من مئةٍ.

$$\mathbf{u} = \langle 4, -2 \rangle, |\mathbf{v}| = 10, \theta = 45^{\circ}$$
 (30

$$\mathbf{u} = \langle 3, 4 \rangle, |\mathbf{v}| = \sqrt{29}, \theta = 121^{\circ}$$
 (31)

مسائل مهارات التفكير العليا

فسِّر تبريرك.

(32) **تبریر:** اختبر صحة أو خطأ العبارة الآتية: إ $|\mathbf{d}|$, $|\mathbf{e}|$, $|\mathbf{f}|$ تُمثِّل ثلاثية فيثاغورس، وكانت الزاويتان بين \mathbf{e} , \mathbf{f} وبين \mathbf{e} , \mathbf{e} حادتين، فإن الزاوية بين \mathbf{d} , \mathbf{e} يجب أن تكون قائمة.

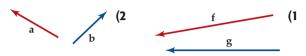
33) اكتشف الخطأ: يدرس كلٌّ من فهد وفيصل خصائص الضرب الداخلي للمتجهات، فقال فهد: إن الضرب الداخلي للمتجهات عملية تجميعية؛ لأنها إبدالية؛ أي أن:

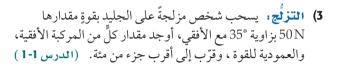
(u • v) • w = u • (v • w)، ولكن فيصل عارضه، فأيهما كان على صواب؟ وضِّح إجابتك.

34) اكتب: وضّح كيف تجد الضرب الداخلي لمتجهين غير صفريين.

، $\mathbf{u}=\langle \mathbf{u}_1,\mathbf{u}_2\rangle$, $\mathbf{v}=\langle \mathbf{v}_1,\mathbf{v}_2\rangle$, $\mathbf{w}=\langle \mathbf{w}_1,\mathbf{w}_2\rangle$: إذا كان إذا كان الأتية فأثبت خصائص الضرب الداخلي الآتية :

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 (35)


$$u \cdot (v + w) = u \cdot v + u \cdot w$$
 (36)


$$k(\mathbf{u} \cdot \mathbf{v}) = k\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot k\mathbf{v}$$
 (37)

90° يساوي \mathbf{u} , \mathbf{v} يساوي أدا كان قياس الزاوية بين المتجهين \mathbf{u} , \mathbf{v} يساوي فأثبت أن \mathbf{v} و \mathbf{v} باستعمال قاعدة الزاوية بين متجهين غير صفريين.

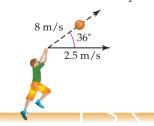
أوجد محصلة كل زوج من المتجهات الآتية مستعملًا قاعدة المثلث، أو متوازى الأضلاع، وقرِّب المحصلة إلى أقرب جزءٍ من عشرةٍ من السنتمتر، ثم حدِّد اتجاهها بالنسبة للأفقى ، مستعملًا المسطرة والمنقلة .

اكتب \overrightarrow{BC} المُعطاة نقطتا بدايته ونهايته، في كلِّ ممَّا يأتي بدلالة متجهَي الوحدة i, j . (الدرس 2-1)

$$B(10,-6), C(-8,2)$$
 (6 $B(3,-1), C(4,-7)$ (5

$$B(4,-10), C(14,10)$$
 (8 $B(1,12), C(-2,-9)$ (7

(9) اختيار من متعدد: أيُّ مما يأتي يُمثِّل الصورة الإحداثية لِ \overrightarrow{AB} ، حيث B(2, -1) نقطة بدايته، و B(2, -1) نقطة نهايته؟ (الدرس 2-1)


$$\langle -4, 7 \rangle$$
 C

$$\langle 4, -1 \rangle$$
 A

$$\langle -6, 4 \rangle$$
 D

$$\langle 7, -4 \rangle$$
 B

10) كرة سلة: ركض راشد في اتجاه السلة في أثناء مباراة بسرعة 2.5 m/s ، ومن منتصف الملعب صوَّب كرَّةً بسرعة 8 m/s بزاويةٍ قياسها °36 مع الأفقى. (الدرس 1-2)

- a) اكتب الصورة الإحداثية للمتجهين اللّذين يُمثّلان سرعة راشد، وسرعة الكرة ، قرِّب الناتج إلى أقرب جزء من عشرة.
- b) ما السرعة المحصلة، واتجاه حركة الكرة؟ قرِّب المحصلة إلى أقرب جزء من عشرة، وقياس الزاوية إلى أقرب درجة.

أوجد الصورة الإحداثية، وطول المتجه المُعطاة نقطتا بدايته ونهايته على الترتيب في كلِّ مما يأتي ، قرِّب الناتج إلى أقرب جزء من عشرة. (الدرس 2-1)

$$Q(1, -5)$$
, $R(-7, 8)$ (12 $A(-4, 2)$, $B(3, 6)$ (11

أوجد قياس الزاوية θ بين المتجهين v, وقرِّب الناتج إلى أقرب درجة: (الدرس 3-1)

$$u = \langle 9, -4 \rangle, v = \langle -1, -2 \rangle$$
 (13)

$$u = \langle 8, 4 \rangle, v = \langle -2, 4 \rangle$$
 (14)

$$u = \langle 2, -2 \rangle, v = \langle 3, 8 \rangle$$
 (15)

(16 اختیار من متعدد: إذا کان:
$$\mathbf{u} = \langle 2, 3 \rangle, \mathbf{v} = \langle -1, 4 \rangle, \mathbf{w} = \langle 8, -5 \rangle$$
 فما ناتج $(\mathbf{u} \cdot \mathbf{v}) + (\mathbf{w} \cdot \mathbf{v})$

$$-2$$
 A

$$-18$$
 B

أوجد الضرب الداخلي للمتجهين في كلِّ مما يأتي، ثم تحقَّق مما إذا كانا متعامدين أم لا: (الدرس 3-1)

$$\langle 4, -3 \rangle \cdot \langle 7, 4 \rangle$$
 (18

$$(2, -5) \cdot (4, 2)$$
 (17)

$$\langle 3, -6 \rangle \cdot \langle 10, 5 \rangle$$
 (20 $\langle 1, -6 \rangle \cdot \langle 5, 8 \rangle$ (19

21) عربة: يسحب أحمد عربةً بقوةٍ مقدارها 25N، وبزاوية 30° مع الأفقى كما في الشكل أدناه. (الدرس 3-1)

- a ما مقدار الشغل الذي يبذله أحمد عندما يسحب العربة 150m قرّب الناتج إلى أقرب جزء من عشرة.
- (b) إذا كانت الزاوية بين ذراع العربة والأفقى °40، وسحب أحمد العربة المسافة نفسها، وبالقوة نفسها، فهل يبذل شغلًا أكبر أم أقل؟ فسر إجابتك.

المتجهات في الفضاء الثلاثي الأبعاد

Vectors in Three-Dimensional Space

درست المتجهات في النظام الثنائي الأبعاد هندسيًّا وجبريًا. الدرس (1-1)

فيما سيقي

e VY U

- أعيِّنُ نقاطًا، ومتجهات في النظام الإحداثي الثلاثي
- أعبر عن المتجهات جبريًا، وأجري العمليات عليها في الفضاء الثلاثي الأبعاد.

المضر دارتتين

نظام الإحداثيات الثلاثي three-dimensional coordinate system

المحور 2

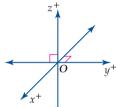
z-axis

الثُمن

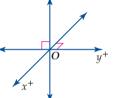
octant

الثلاثي المرتب ordered triple

إرشادات للدراسة


تدريج المحاور

تذكر أن التدريج في المحاور الثلاثة في نظام الإحداثيات الثلاثي الأبعاد متساو.


لإطلاق صاروخ في الفضاء، يلزم تحديد اتجاهه وزاويته في الفضاء. وبما أن مفاهيم المسافة والسرعة والقوةُ المتجهة غير مقيدة في المستوى، فلا بد من توسيع مفهوم المتجه إلى الفضاء الثلاثي الأبعاد.

الإحداثيات في الفضاء الثلاثي الأبعاد المستوى الإحداثي: هو نظام إحداثي ثنائي الأبعاد يتشكل بواسطة خطّي أعداد متعامدين، هما المحور x والمحور y، اللذان يتقاطعان في نقطة تسمى نقطة الأصل. ويسمح لك هذا النظام بتحديد وتعيين نقاطٍ في المستوى، وتحتاج إلى <mark>نظام الإحداثيات الثلاثي الأَبعاد</mark>؛ لتعيين نقطةٍ في الفضاء، فنبدأ بالمُستوى xy، ونضعه بصورة تُظهر عمقًا للشكل كمِّا في الشكل 1.4.1، ثم نضيف محورًا ثالثًا يُسمَّى المحور z يمر بنقطة الأصل، ويعامد كلَّا من المحورين ٧، يك كما في الشكل 1.4.2. فيكون لدينا ثلاثة مستويات هي xy, yz, xz ، وتقسم هذه المستويات الفضاء إلى ثماني مناطق، يُسمَّى كلُّ منها الثُّمُن ، ويمكن تمثيل الثُّمُن الأول بجزء الحجرة في الشكل 1.4.3.

الشكل 1.4.2

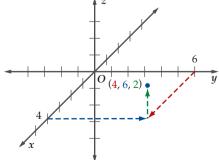
الشكل 1.4.1

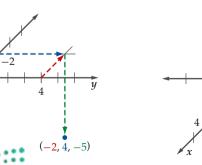
الشكل 1.4.3

المستوى xy

تُمثّل النقطة في الفضاء بثلاثيات مرتبة من الأعداد الحقيقية (x, y, z)، ولتعيين مثل هذه النقطة، عيّن أولًا النقطة . x في المستوى x ، ثم تحرك لأعلى، أو إلى أسفل موازيًا للمحور z ، بحسب المسافة المتجهة التي يُمثّلها z .

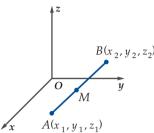
تعيين نقطة في الفضاء


عيِّن كلُّا من النقطتين الآتيتين في نظام الإحداثيات الثلاثي الأبعاد:


(-2,4,-5) (b)

عيّن (4, 6) في المستوى xy بوضع إشارة مناسبة، ثم ضع نقطةً على بُعد وحدتين أعلى الإشارة التي وضعتها، وبموازاة المحور 2، كما في الشكل أدناه .

مناسبة، ثم ضع نقطةً على بُعد 5 وحداتٍ أسفل الإشارة التي وضعتها، وبموازاة المحور 2، كما في


🗹 تحقق من فهمك

عيِّن كلًّا من النقاط الآتية في نظام الإحداثيات الثلاثي الأبعاد: (3, 2, -3) (1B) (-3, -4, 2) (1A)

وزارة التعليم

Ministry of Education 2021 - 1443 (5, -4, -1) (1C) عملية إيجاد المسافة بين نقطتين، وإيجاد نقطة منتصف قطعة مستقيمة في الفضاء تشبهان عملية إيجاد المسافة، ونقطة منتصف قطعة مستقيمة في المستوى الإحداثي .

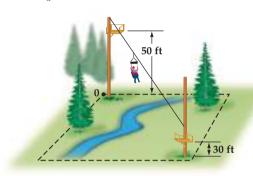
مفهوم أساسي صيغتا المسافة ونقطة المنتصف في الفضاء

 $A(x_1,y_1,z_1)$, $B(x_2,y_2,z_2)$ أيطى المسافة بين النقطتين بالصيغة:

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

وتعطى نقطة المنتصف M لـ \overline{AB} بالصيغة:

🥡 مثال 2 من واقع الحياة


$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2}\right)$$

المسافة بين نقطتين ونقطة منتصف قطعة مستقيمة في الفضاء

الريطامع الحياة

يستمتع سكان البنايات الشاهقة، خصوصًا في الأماكن المرتفعة، بمشاهدة أجزاء من المدينة كالجسور وحركة المرور، والحدائق ... إلخ.

وزارة التعليم

رحلة: تتحرك العربة في الشكل المجاور على سلسلة مشدودة، تربط بين منصَّتين تسمح للمتنزهين بالمرور فوق مناظر طبيعية خلابة. إذا مُثلت المنصتان بالنقطتين: (70, 12, 50)، وكانت الإحداثيات معطاة بالأقدام، فأجب عما يأتي:

أوجد طول السلسلة اللازمة للربط بين المنصَّتين
 إلى أقرب قدم.

استعمل صيغة المسافة بين نقطتين.

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$(x_2, y_2, z_2) = (70, 92, 30), (x_1, y_1, z_1) = (10, 12, 50)$$

$$= \sqrt{(70 - 10)^2 + (92 - 12)^2 + (30 - 50)^2}$$

$$\approx 101.98$$

أي أننا نحتاج إلى حبلٍ طوله 102 ft تقريبًا للربط بين المنصَّتين.

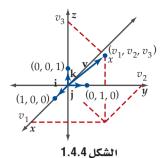
b) أوجد إحداثيات منتصف المسافة بين المنصَّتين.

استعمل صيغة نقطة المنتصف في الفضاء.

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$

$$(x_2, y_2, z_2) = (70, 92, 30), (x_1, y_1, z_1) = (10, 12, 50)$$

$$= \left(\frac{10 + 70}{2}, \frac{12 + 92}{2}, \frac{50 + 30}{2}\right)$$

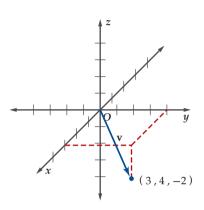

$$= (40, 52, 40)$$

أي أن إحداثيات منتصف المسافة بين المنصتين هي (40, 52, 40)

🗹 تحقق من فهمك

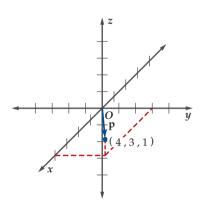
- 2) طائرات: تفرض أنظمة السلامة ألَّا تقل المسافة بين الطائرات عن 0.5 mi في أثناء طيرانها، إذا علمت أن طائرتين تطيران فوق إحدى المناطق، وفي لحظةٍ معينةٍ كانت إحداثيات موقِعَي الطائرتين: (450, 250, 28000), (450, 28000)، مع العلم بأن الإحداثيات معطاة بالاقدام، فأجب عما يأتي:
 - A) هل تخالف الطائرتان أنظمة السلامة؟

(B) إذا أطلقت ألعابٌ ناريةٌ، وانفجرت في منتصف المسافة بين الطائرتين، فما إحداثيات نقطة الانفجار؟ والمسافة بين الطائرتين، فما إحداثيات نقطة الانفجار؟ و1443 - 2021 إرشادٌ: الميل = 5280 قدمًا


المتجهات في الفضاء إذا كان \mathbf{v} متجهًا في الفضاء في وضع قياسي، وكانت (v_1,v_2,v_3) نقطة نهايته، فإننا نعبّر عنه بالصورة الإحداثية $\langle v_1,v_2,v_3 \rangle$ ، كما يُعبّر عن المتجه الصفري بالصورة الإحداثية $\langle i=\langle 1,0,0\rangle,j=\langle 0,1,0\rangle,k=\langle 0,0,1\rangle$ وعن متجهات الوحدة القياسية بالصورة الإحداثية $\langle i,j,k\rangle$ على صورة توافق خطي لمتجهات الوحدة $\langle i,j,k\rangle$ الشكل 1.4.4 ، ويمكن التعبير عن الصورة الإحداثية للمتجه $\langle i,j,k\rangle$ على صورة توافق خطي لمتجهات الوحدة كما يأتي:

مثال 3 تعيين متجه في الفضاء

مثِّل بيانيًّا كلًّا من المتجهين الآتيين في نظام الإحداثيات الثلاثي الأبعاد:


$$v = (3, 4, -2)$$
 (a

عيِّن النقطة (3,4,-2)، ثم مثِّل المتجه \mathbf{v} بيانيًّا، بحيث تكون النقطة (3,4,-2) نقطة نهايته.

$$p = 4i + 3j + k$$
 (b)

عيِّن النقطة (4, 3, 1) ، ثم مثِّل المتجه p بيانيًّا، بحيث تكون النقطة (4, 3, 1) نقطة نهايته.

🗹 تحقق من فهمك

مثِّل بيانيًّا كلًّا من المتجهين الآتيين في نظام الإحداثيات الثلاثي الأبعاد:

$$u = \langle -4, 2, -3 \rangle$$
 (3A)

$$\mathbf{w} = -\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$
 (3B)

إذا كُتبت المتجهات في الفضاء على الصورة الإحداثية، فإنه يمكن أن تُجرى عليها عمليات الجمع، والطرح، والضرب في عدد حقيقي كما هي الحال في المتجهات في المستوى الإحداثي.

مفهوم أساسي العمليات على المتجهات في الفضاء

ياذا كان (a_1,a_2,a_3) عددًا حقيقيًّا ، فإن : $\mathbf{b}=\langle \ b_1,b_2,b_3 \ \rangle$ ، $\mathbf{a}=\langle \ a_1,a_2,a_3 \ \rangle$ إذا كان $\mathbf{a}+\mathbf{b}=\langle \ a_1+b_1,a_2+b_2,a_3+b_3 \ \rangle$

 ${f a}-{f b}={f a}+(-{f b})=\langle \ a_1-b_1, a_2-b_2, a_3-b_3
angle$ طرح متجهین $k\,{f a}=\langle \ ka_1\,, ka_2\,, ka_3
angle$ ضرب متجه في عدد حقيقيً

القالة التعليم $k\mathbf{a} = \langle ka_1, ka_2, ka_3 \rangle$

مـثال 4

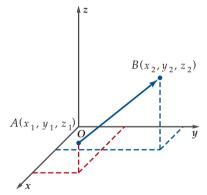
إرشادات للدراسة

العمليات على المتجهات خصائص العمليات على المتجهات في الفضاء هي الخصائص نفسها في المستوى الإحداثي.

العمليات على المتجهات في الفضاء

$$\mathbf{y}=\langle\,3\,,-6\,,2\,
angle,\,\mathbf{w}=\langle\,-1\,,4\,,-4\,
angle,\,\mathbf{z}=\langle\,-2\,,0\,,5\,
angle$$
 أوجد كلَّا مما يأتي للمتجهات:

4y + 2z (a


$$4\mathbf{y}+2\mathbf{z}=4\langle 3\,,-6\,,2\,\rangle +2\langle -2\,,0\,,5\,\rangle$$
 عوْض
$$=\langle 12\,,-24\,,8\rangle +\langle -4\,,0\,,10\,\rangle$$

$$=\langle 8\,,-24\,,18\,\rangle$$

2w - z + 3y (b)

$$2\mathbf{w} - \mathbf{z} + 3\mathbf{y} = 2\langle -1 \,, 4 \,, -4 \, \rangle - \langle -2 \,, 0 \,, 5 \, \rangle + 3\langle 3 \,, -6 \,, 2 \, \rangle$$
 اضرب متجه في عدد حقيقي
$$= \langle -2 \,, 8 \,, -8 \, \rangle + \langle 2 \,, 0 \,, -5 \, \rangle + \langle 9 \,, -18 \,, 6 \, \rangle$$
 اجمع المتجهات
$$= \langle 9 \,, -10 \,, -7 \, \rangle$$

🗹 تحقق من فهمك

:
$$\mathbf{y} = \langle \, 3 \, , -6 \, , 2 \, \rangle$$
, $\mathbf{w} = \langle \, -1 \, , 4 \, , \, -4 \, \rangle$, $\mathbf{z} = \langle \, -2 \, , 0 \, , 5 \, \rangle$ أوجد كلًّا مما يأتي للمتجهات: $3\mathbf{y} + 3\mathbf{z} - 6\mathbf{w}$ (4B $4\mathbf{w} - 8\mathbf{z}$ (4A

 \overline{AB} وكما في المتجهات ذات البُعدين، نجد الصورة الإحداثية للمتجه $B(x_2,y_2,z_2)$ وذلك الذي نقطة بدايته $B(x_2,y_2,z_2)$ و ذلك بطرح إحداثيات نقطة البداية من إحداثيات نقطة النهاية.

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$
 $\langle |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ وعندها یکون:

: فإن ، \overrightarrow{AB} = $\langle a_1$, a_2 , $a_3 \rangle$: فإن

$$|\overrightarrow{AB}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

 $\mathbf{u}=rac{\overline{AB}}{|\overline{AB}|}$ ويكون متجه الوحدة \mathbf{u} باتجاه \overline{AB} هو

مـثال 5 التعبير عن المتجهات في الفضاء جبريًا

أوجد الصورة الإحداثية، وطول \overline{AB} الذي نقطة بدايته (1 , 2 – , 4 –) A ، ونقطة نهايته (\overline{AB} , \overline{AB} ، \overline{AB} . ثم أوجد متجه الوحدة باتجاه \overline{AB} .

الصورة الإحداثية لمتجه
$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$
 $(x_1, y_1, z_1) = (-4, -2, 1), (x_2, y_2, z_2) = (3, 6, -6)$ $= \langle 3 - (-4), 6 - (-2), -6 - 1 \rangle = \langle 7, 8, -7 \rangle$

وباستعمال الصورة الإحداثية، فإن طول \overline{AB} هو:

$$\overrightarrow{AB} = \langle 7, 8, -7 \rangle$$
 $|\overrightarrow{AB}| = \sqrt{7^2 + 8^2 + (-7)^2}$
= $9\sqrt{2}$

ويستعمل هذا الطول والصورة الإحداثية؛ لإيجاد متجه وحدة \mathbf{u} باتجاه \overline{AB} كما يأتي:

$$\overrightarrow{AB}$$
 متجه وحدة باتجاه $\mathbf{u}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$ $\overrightarrow{AB}=\langle 7,8,-7\rangle$, $|\overrightarrow{AB}|=9\sqrt{2}$ $=\frac{\langle 7,8,-7\rangle}{9\sqrt{2}}=\left\langle \frac{7\sqrt{2}}{18},\frac{4\sqrt{2}}{9},\frac{-7\sqrt{2}}{18}\right\rangle$

🗹 تحقق من فهمك

أوجد الصورة الإحداثية، وطول \overline{AB} المُعطاة نقطتا بدايته ونهايته، ثم أوجد متجه الوحدة باتجاه \overline{AB} في كلِّ محا يأتيت لير

$$A(-1,4,6), B(3,3,8)$$
 (5B)

$$A(-2, -5, -5), B(-1, 4, -2)$$
 (5A)

تدرب وحل المسائل

عيِّن كل نقطة مما يأتي في نظام الإحداثيات الثلاثي الأبعاد: (مثال 1)

- (1, -2, -4) (1
 - (3, 2, 1) **(2**
- (-5, -4, -2) (3
 - (-2, -5, 3) (4
 - (2, -2, 3) (5
- (-16, 12, -13) (6

أوجد طول القطعة المستقيمة المعطاة نقطتا نهايتها وبدايتها، ثم أوجد إحداثيات نقطة منتصفها في كلِّ مما يأتي: (مثال 2)

- (-4, 10, 4), (1, 0, 9) (7
- (-6, 6, 3), (-9, -2, -2) (8
 - (8, 3, 4), (-4, -7, 5) (9
- (-7, 2, -5), (-2, -5, -8) (10
- 11) طيًارون: في لحظة ما أثناء تدريب عسكري، كانت إحداثيات موقع طائرة (675, -121, 19300)، وإحداثيات موقع طائرة أخرى (289, 715, 16100) ، علمًا بأن الإحداثيات معطاة بالأقدام. (مثال 2)
 - a) أوجد المسافة بين الطائرتين مقرَّبة إلى أقرب قدم .
 - **b** عيّن إحداثيات النقطة التي تقع في منتصف المسافة بين الطائرتين في تلك اللحظة.

مثّل بيانيًّا كلًّا من المتجهات الآتية في نظام الإحداثيات الثلاثي الأبعاد: (مثال 3)

- $a = \langle 0, -4, 4 \rangle$ (12)
- $b = \langle -3, -3, -2 \rangle$ (13)
 - $c = \langle -1, 3, -4 \rangle$ (14)
 - $d = \langle 4, -2, -3 \rangle$ (15)
 - v = 6i + 8j 2k (16)
 - w = -10i + 5k (17)
- m = 7i 6j + 6k (18)
 - n = i 4j 8k (19)

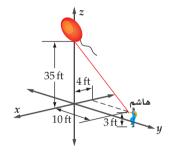
- أو جد كلًّا مما يأتي للمتجهات : $\mathbf{a} = \langle -5, -4, 3 \rangle, \mathbf{b} = \langle 6, -2, -7 \rangle, \mathbf{c} = \langle -2, 2, 4 \rangle$ (مثال 4)
 - 6a 7b + 8c (20)
 - 7a 5b (21)
 - 2a + 5b 9c (22)
 - 6b + 4c 4a (23)
 - 8a 5b c (24)
 - -6a + b + 7c (25)

أوجد كلًّا مما يأتي للمتجهات :

x = -9i + 4j + 3k, y = 6i - 2j - 7k, z = -2i + 2j + 4k

(مثال 4)

- 7x + 6y (26)
- 3x 5y + 3z (27)
- 4x + 3y + 2z (28)
- -8x 2y + 5z (29)
 - -6y 9z (30)
 - -x 4y z (31)


أوجد الصورة الإحداثية، وطول \overline{AB} المُعطاة نقطتا بدايته ونهايته، في كلِّ مما يأتي، ثم أوجد متجه الوحدة في اتجاه \overline{AB} . (مثال δ)

- A(-5, -5, -9), B(11, -3, -1) (32)
 - A(-4, 0, -3), B(-4, -8, 9) (33
 - A(3, 5, 1), B(0, 0, -9) (34
 - A(-3, -7, -12), B(-7, 1, 8) (35)
 - A(2, -5, 4), B(1, 3, -6) (36)
 - A(8, 12, 7), B(2, -3, 11) (37)
- A(3, 14, -5), B(7, -1, 0) (38)
 - A(1, -18, -13), B(21, 14, 29) (39)

pيلحتاا قرازم Ministry of Education 2021 - 1443

إذا كانت N منتصف \overline{MP} ، فأوجد إحداثيات النقطة P في كلِّ ممَّا يأتي:

- $M(3, 4, 5), N(\frac{7}{2}, 1, 2)$ (40
- M(-1, -4, -9), N(-2, 1, -5) (41)
 - $M(7, 1, 5), N(5, -\frac{1}{2}, 6)$ (42)
- $M(\frac{3}{2}, -5, 9), N(-2, -\frac{13}{2}, \frac{11}{2})$ (43)
- (44) تطوَّع: تَطَوَّع هاشم لحمل بالونِ كدليل في استعراض رياضي. إذا كان البالون يرتفع 35 ft عن سطح الأرض، ويمسك هاشم بالحبل الذي ثبت به البالون على ارتفاع 3 ft عن سطح الأرض، كما في الشكل أدناه، فأوجد طول الحبل إلى أقرب قدم.

حدّد نوع المثلث الذي رؤوسه هي النقاط الثلاث في كلِّ مما يأتي (قائم الزاوية، أو متطابق الضلعين، أو مختلف الأضلاع):

- A(3, 1, 2), B(5, -1, 1), C(1, 3, 1) (45)
 - A(4,3,4) , B(4,6,4) , C(4,3,6) (46
- A(-1,4,3), B(2,5,1), C(0,-6,6) (47)
- **48) كرات:** استعمل قانون المسافة بين نقطتين في الفضاء؛ لكتابة صيغة عامة لمعادلة كرة مركزها (h, k, ℓ) ، وطول نصف قطرها r. "إرشاد: الكرة هي مجموعة نقاط في الفضاء تبعد بعدًا ثابتًا (نصف القطر) عن نقطة ثابتة (المركز)".

استعمل الصيغة العامة لمعادلة الكرة التي وجدتها في السؤال 48؛ لإيجاد معادلة الكرة المعطى مركزها، وطول نصف قطرها في كلِّ مما يأتي:

- 4 مرکزها (4, -2, 3) مول نصف قطرها (49) مرکزها
 - $\frac{1}{2}$ مرکزها (6, 0, -1) مطول نصف قطرها (50)
- $\sqrt{3}$ مرکزها (5, -3, 4) ، طول نصف قطرها (51
- **52)** مركزها (0,7,-1) ، طول نصف قطرها 12

مسائل مهارات التفكير العليا

- تحدًّ: إذا كانت M هي نقطة منتصف القطعة المستقيمة الواصلة بين النقطتين: $M_1(-1,2,-5)$, $M_2(3,8,-1)$ ، فأوجد إحداثيات منتصف القطعة المستقيمة $M_1(-1,2,-5)$.
- 54) اكتب: اذكر موقفًا يكون فيه استعمال النظام الإحداثي الثنائي الأبعاد أكثر منطقية، وآخر يكون فيه استعمال النظام الإحداثي الثلاثي الأبعاد أكثر منطقية.

مراجعة تراكمية

أوجد الصورة الإحداثية وطول \overline{AB} المُعطاة نقطتا بدايته ونهايته في كلِّ ممَّا يأتى: (الدرس 2-1)

- A(6, -4), B(-7, -7) (55)
 - A(-4, -8), B(1, 6) (56)
- A(-5, -12), B(1, 6) (57)

اكتب \overline{DE} المعطاة نقطتا بدايته ونهايته على صورة توافقٍ خطِّيٍّ لمتجهَي الوحدة i , j في كلِّ ممَّا يأتي: (الدرس 2-1)

- $D\left(-5,\frac{2}{3}\right), E\left(-\frac{4}{5},0\right)$ (58
- $D\left(-\frac{1}{2}, \frac{4}{7}\right), E\left(-\frac{3}{4}, \frac{5}{7}\right)$ (59
- D(9.7, -2.4), E(-6.1, -8.5) (60

تدريب على اختبار

- 61) ما نوع المثلث الذي رؤوسه هي النقاط (A(0, 3, 5), B(1, 0, 2), C(0, -3, 5) ؟
 - A قائم الزاوية
 - B متطابق الضلعين
 - C متطابق الأضلاع
 - D مختلف الأضلاع

1-5

الضرب الداخلي والضرب الاتجاهي للمتجهات في الفضاء Dot and Cross Products of Vectors in Space

رفيما رسياق:

درست الضرب الداخلي لمتجهين في المستوى . الدرس (3–1)

- أجدُ الضرب الداخلي
 لمتجهين، والزاوية بينهما
 في الفضاء.
- أجدُ الضرب الاتجاهي
 للمتجهات، وأستعمله في
 إيجاد المساحات والحجوم.

المفردان

المضرب الاتجاهي cross product متوازي السطوح parallelepiped المضرب القياسي الثلاثي triple scalar product

لما دارو

يستعمل طارق المتجهات؛ ليتحقق ممًّا إذا كان خطًّا سير طائرتين متوازيين أم لا؛ وذلك بمعرفة إحداثيات نقطتي الإقلاع، ونقطتين تصلان إليهما بعد فترة زمنية معينة.

المضرب الداخلي في الفضاء إيجاد الضرب الداخلي لمتجهين في الفضاء يشبه إيجاده لمتجهين في المستوى، وكما هي الحال مع المتجهات في المستوى، يتعامد متجهان غير صفريين في الفضاء، إذا وفقط إذا كان حاصل ضربهما الداخلي صفرًا.

مفهوم أساسي الضرب الداخلي والمتجهات المتعامدة في الفضاء

يُعَرَّف الضرب الداخلي للمتجهين: $a=\langle a_1,a_2,a_3\rangle$, $b=\langle b_1,b_2,b_3\rangle$ في الفضاء كالآتي: $a\cdot b=a_1b_1+a_2b_2+a_3b_3$ ويكون المتجهان غير الصفريين a , b متعامدين ، إذا وفقط إذا كان $a\cdot b=0$

إيجاد الضرب الداخلي لتحديد المتجهات المتعامدة

أوجد حاصل الضرب الداخلي للمتجهين ٣, ٧ في كلٌّ مما يأتي، ثم حدِّد ما إذا كانا متعامدين أم لا:

$$\mathbf{u} = \langle 3, -3, 3 \rangle, \mathbf{v} = \langle 4, 7, 3 \rangle$$
 (b $\mathbf{u} = \langle -7, 3, -3 \rangle, \mathbf{v} = \langle 5, 17, 5 \rangle$ (a

$$\mathbf{u} = \langle 3, -3, 3 \rangle, \mathbf{v} = \langle 4, 7, 3 \rangle$$
 $\mathbf{u} \cdot \mathbf{v} = 3(4) + (-3)(7) + 3(3)$ $\mathbf{u} \cdot \mathbf{v} = -7(5) + 3(17) + (-3)(5)$

$$= 12 + (-21) + 9 = 0$$

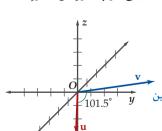
$$= -35 + 51 + (-15) = 1$$

وبما أن
$$\mathbf{v} = \mathbf{v}$$
 ، فإن \mathbf{u} , \mathbf{v} غير متعامدين . وبما أن $\mathbf{u} \cdot \mathbf{v} = \mathbf{v}$ ، فإن \mathbf{u} متعامدان.

🗹 تحقق من فهمك

🚺 تحقق من فهمك

مـثال 1


أوجد حاصل الضرب الداخلي للمتجهين ٧ , ١١ في كلِّ مما يأتي، ثم حدِّد ما إذا كانا متعامدين أم لا:

$$\mathbf{u} = \langle 4, -2, -3 \rangle, \mathbf{v} = \langle 1, 3, -2 \rangle$$
 (1B $\mathbf{u} = \langle 3, -5, 4 \rangle, \mathbf{v} = \langle 5, 7, 5 \rangle$ (1A

. $\cos \theta = \frac{a \cdot b}{|a||b|}$ في المتجهات في المستوى، إذا كانت θ هي الزاوية بين متجهين غير صفريين a, b في المتجهات فإن المستوى، إذا كانت θ

ـ ثال 2 الزاوية بين متجهين في الفضاء

أوجد قياس الزاوية θ بين u , v إذا كان: (u, v) عان: u , v ، إذا كان: u , v ، إذا كان: u ، v ، إذا كان: u ، v ، إذا كان: u ، أوجد قياس الزاوية u ، إلى أقرب جزء من عشرة .

الزاوية بين متجهين $ext{cos } heta = rac{ extbf{u} \cdot ext{v}}{| ext{u}| | ext{v}|}$

$$\mathbf{u} = \langle 3, 2, -1 \rangle$$
, $\mathbf{v} = \langle -4, 3, -2 \rangle$ $\cos \theta = \frac{\langle 3, 2, -1 \rangle \cdot \langle -4, 3, -2 \rangle}{|\langle 3, 2, -1 \rangle| |\langle -4, 3, -2 \rangle|}$

أوجد المتجهين أوجد المتجهين
$$ext{cos } heta = rac{-4}{\sqrt{14}\,\sqrt{29}}$$

$$heta$$
بسَط وحُل بالنسبة إلى $heta=\cos^{-1}rac{-4}{\sqrt{406}}pprox 101.5^\circ$

أي أن قياس الزاوية بين u , v هو 101.5° تقريبًا.

وزارة التعليم

Manstry of Lourane المنتجهين: $\mathbf{u} = -4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v} = 4\mathbf{i} + 3\mathbf{k}$ ، إلى أقرب منزلة عشرية. $\mathbf{u} = -4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ وجد قياس الزاوية بين المتجهين: $\mathbf{u} = -4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v} = 4\mathbf{i} + 3\mathbf{k}$

رشادات للدراسة

يكون المستقيم عموديًّا على مستوى، إذا كان عموديًا على كل مستقيم يقع في هذا المستوى ويتقاطع معه.

الضرب الاتجاهي هو نوع آخر من الضرب بين المتجهات في الفضاء، وبخلاف الضرب 7 (a imes b هو متجه وليس عددًا، ويُرمز له بالرمز a imes للداخلي، فإن الضرب الاتجاهي لمتجهين a. a , b ويكون المتجهين $a \times b$ عموديًّا على المستوى الذي يحوى المتجهين a , b

مفهوم أساسي الضرب الاتجاهي للمتجهات في الفضاء

$${f a}$$
, ${f b}$ إذا كان: ${f a}=a_1{f i}+a_2{f j}+a_3{f k}$, ${f b}=b_1{f i}+b_2{f j}+b_3{f k}$ إذا كان:

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$
 هو المتجه:

$$i,j,k$$
 إذا طبَّقنا قاعدة حساب قيمة محدِّدة من الدرجة الثالثة على المحدِّدة أدناه، والتي تتضمن متجهات الوحدة وإحداثيات كلِّ من a,b ، فإننا نتوصل إلى القاعدة نفسها للمتجه b .

$$\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \text{ i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \text{ j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \text{ k}$$

$$\mathbf{a} \times \mathbf{b} = (a_2 b_3 - a_3 b_2) \mathbf{i} - (a_1 b_3 - a_3 b_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}$$

تنبيها

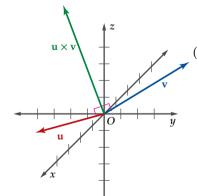
الضرب الاتجاهي

يطبق الضرب الاتجاهى على المتجهات في نظام الإحداثيات الثلاثي الأبعاد فقط، ولا يطبق على المتجهات في المستوى الإحداثي.

إيجاد الضرب الاتجاهى لمتجهين مـثال 3

 \mathbf{u} ، \mathbf{v} الاتجاهي للمتجهين: $\mathbf{u} \times \mathbf{v}$ الوجد الضرب الاتجاهي للمتجهين: $\mathbf{u} \times \mathbf{v}$ ، $\mathbf{v} = \langle 3, -2, 1 \rangle$, $\mathbf{v} = \langle -3, 3, 1 \rangle$ يعامد كلَّا من

$$\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}, \mathbf{v} = -3\mathbf{i} + 3\mathbf{j} + \mathbf{k} \quad \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -2 & 1 \\ -3 & 3 & 1 \end{vmatrix}$$


قاعدة إيجاد قيمة محدّدة الدرجة الثالثة
$$= \begin{vmatrix} -2 & 1 \ 3 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 3 & 1 \ -3 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 3 & -2 \ -3 & 3 \end{vmatrix} \mathbf{k}$$

أوجد قيمة محدّدة الدرجة الثانية
$$=(-2-3)\mathbf{i}-[3-(-3)]\mathbf{j}+(9-6)\mathbf{k}$$

$$=-5\mathbf{i}-6\mathbf{j}+3\mathbf{k}$$

الصورة الإحداثية
$$=\langle -5, -6, 3 \rangle$$

ولإثبات أن u × v يعامد كلًا من u, v جبريًّا، أوجد الضرب الداخلي لـ u × v مع كلِّ من u, v.

 $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}$ $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}$ $=\langle -5, -6, 3 \rangle \cdot \langle -3, 3, 1 \rangle = \langle -5, -6, 3 \rangle \cdot \langle 3, -2, 1 \rangle$ = -5(-3) + (-6)(3) + 3(1) = -5(3) + (-6)(-2) + 3(1)= 15 + (-18) + 3 = 0=-15+12+3=0

 $\mathbf{u} imes \mathbf{v}$ بما أن حاصل الضرب الداخلي في الحالتين يساوي صفرًا، فإن عمودي على كلِّ من v, u.

🚺 تحقق من فهمك

أوجد الضرب الاتجاهي للمتجهين u, v في كلِّ ممايأتي، ثم بيّن أن u × v يعامد كلًّا من u, v :

$$\mathbf{u} = \langle -2, -1, -3 \rangle, \mathbf{v} = \langle 5, 1, 4 \rangle$$
 (3B) $\mathbf{u} = \langle 4, 2, -1 \rangle, \mathbf{v} = \langle 5, 1, 4 \rangle$ (3A)

Ministry of Education

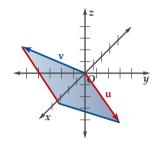
للضرب الاتجاهي تطبيقات هندسية عديدة، فمثلًا مقدار المتجه [u × v] يُعبِّر عن مساحة متوازى الأضلاع الذي فيه u, v ضلعان متجاوران كما في الشكل 1.5.1.

مساحة متوازي أضلاع في الفضاء

. أوجد مساحة متوازى الأضلاع الذي فيه: $\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$, $\mathbf{v} = \mathbf{i} - 5\mathbf{j} + 3\mathbf{k}$ ضلعان متجاوران

 $\mathbf{u} \times \mathbf{v}$ الخطوة 1 أو جد

$$\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}, \mathbf{v} = \mathbf{i} - 5\mathbf{j} + 3\mathbf{k} \quad \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & -3 \\ 1 & -5 & 3 \end{vmatrix}$$


بايجاد قيمة محدّدة الدرجة الثالثة
$$= \begin{vmatrix} 4 & -3 \\ -5 & 3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & -3 \\ 1 & 3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 4 \\ 1 & -5 \end{vmatrix} \mathbf{k}$$

بايجاد قيمة محدّدة الدرجة الثانية
$$= -3\mathbf{i} - 9\mathbf{j} - 14\mathbf{k}$$

$${f u} imes {f v}$$
 أو جد طول ${f v}$ أو جد طول متجه في الفضاء $|{f u} imes {f v}| = \sqrt{(-3)^2 + (-9)^2 + (-14)^2}$ $= \sqrt{286} pprox 16.91$

أي أن مساحة متوازي الأضلاع في الشكل 1.5.1 ، تساوي 16.91 وحدةً مربعةً تقريبًا.

الشكل 1.5.1

🗸 تحقق من فهمك

. أوجد مساحة متوازى الأضلاع الذي فيه: $\mathbf{u} = -6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{v} = 4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ ضلعان متجاوران

الضرب القياسي الثلاثي إذا التقت ثلاثة متجهات في مستويات مختلفة في نقطة البداية، فإنها تكوّن أحرفًا متجاورة ل<mark>متوازّي سطوح</mark>، وهو عبارة عن مجسم له ستة أوجهٍ، كُل وجهٍ منها عٍلى شكّل متوازي أضلاع كما في الشكل 1.5.2 أدناه، إنّ القيمة المطلقة للضرب القياسم الثلاثي لهذه المتجهات يُمثِّل حجم متوازي السطوح.

مفهوم أساسي الضرب القياسي الثلاثي

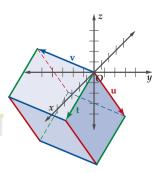
 $t = t_1 \mathbf{i} + t_2 \mathbf{j} + t_3 \mathbf{k}$, $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ إذا كان:

$$\mathbf{t}\cdot(\mathbf{u}\times\mathbf{v})=egin{array}{cccc} t_1 & t_2 & t_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ \end{array}$$
فإن المصرب القياسي الثلاثي للمتجهات \mathbf{t} , \mathbf{u} , \mathbf{v} يُعرف كالآتي

مـثال 5 حجم متوازي السطوح

 $\mathbf{t} = 4\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$, $\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$, $\mathbf{v} = \mathbf{i} - 5\mathbf{j} + 3\mathbf{k}$ أو جد حجم متوازى السطوح الذي فيه: أحرف متجاورة.

$$\begin{array}{l}
 \mathbf{t} = 4\mathbf{i} - 2\mathbf{j} - 2\mathbf{k} \\
 \mathbf{u} = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k} & \mathbf{t} \cdot (\mathbf{u} \times \mathbf{v}) = \begin{vmatrix} 4 & -2 & -2 \\ 2 & 4 & -3 \\ 1 & -5 & 3 \end{vmatrix}$$


$$3 \times 3$$
 أوجد قيمة محدُدة المصفوفة من الرتبة $= \begin{vmatrix} 4 & -3 \\ -5 & 3 \end{vmatrix} (4) - \begin{vmatrix} 2 & -3 \\ 1 & 3 \end{vmatrix} (-2) + \begin{vmatrix} 2 & 4 \\ 1 & -5 \end{vmatrix} (-2)$

$$= -12 + 18 + 28 = 34$$

أي أن حجم متوازي السطوح في الشكل 1.5.2 هو |(t · (u × v) ، ويساوي 34 وحدةً مكعبةً.

🔽 تحقق من فهمك

t=2j-5k, u=-6i-2j+3k, v=4i+3j+k فوجد حجم متوازي السطوح الذي فيه: أحرف متجاورة. Ministry of Education 2021 - 1443

الشكل 1.5.2

تدرب وحل المسائل

أوجد الضرب الداخلي للمتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتي، ثم حدِّد ما إذا كانا متعامدين أم \mathbf{v} : (مثال 1)

$$\mathbf{u} = \langle 3, -9, 6 \rangle, \mathbf{v} = \langle -8, 2, 7 \rangle$$
 (1

$$\mathbf{u} = \langle 5, 0, -4 \rangle, \mathbf{v} = \langle 6, -1, 4 \rangle$$
 (2

$$\mathbf{u} = \langle -7, -3, 1 \rangle, \mathbf{v} = \langle -4, 5, -13 \rangle$$
 (3

$$\mathbf{u} = \langle 11, 4, -2 \rangle, \mathbf{v} = \langle -1, 3, 8 \rangle$$
 (4

$$u = 6i - 2j - 5k$$
, $v = 3i - 2j + 6k$ (5

$$u = 9i - 9j + 6k$$
, $v = 6i + 4j - 3k$ (6

7) كيمياء: تقع إحدى ذرتَي الهيدروجين في جُزيء الماء عند \(55.5, -55.5, -55.5, \) والأخرى عند \(55.5, -55.5, -55.5 -) \)
وذلك في الوقت الذي تقع فيه ذرة الأكسجين في نقطة الأصل. أوجد الزاوية بين المتجهين اللذين يكوّنان رابطة الأكسجين – الهيدروجين مقرَّبة إلى أقرب جزء من عشرةً. (مثال 2)

أوجد قياس الزاوية θ بين المتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتي، وقرّب الناتج إلى أقرب جزءٍ من عشرةٍ: (مثال 2)

$$\mathbf{u} = \langle 6, -5, 1 \rangle, \mathbf{v} = \langle -8, -9, 5 \rangle$$
 (8)

$$\mathbf{u} = \langle -8, 1, 12 \rangle, \mathbf{v} = \langle -6, 4, 2 \rangle$$
 (9

$$\mathbf{u} = \langle 10, 0, -8 \rangle, \mathbf{v} = \langle 3, -1, -12 \rangle$$
 (10)

$$u = -3i + 2j + 9k$$
, $v = 4i + 3j - 10k$ (11)

أوجد الضرب الاتجاهي للمتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتي، ثم بيِّن أن \mathbf{v} عمودي على كلِّ من \mathbf{v} . (مثال \mathbf{v})

$$u = \langle -1, 3, 5 \rangle, v = \langle 2, -6, -3 \rangle$$
 (12)

$$\mathbf{u}=\langle 4,7,-2 \rangle, \mathbf{v}=\langle -5,9,1 \rangle$$
 (13

$$\mathbf{u} = \langle 3, -6, 2 \rangle, \mathbf{v} = \langle 1, 5, -8 \rangle$$
 (14)

$$u = -2i - 2j + 5k$$
, $v = 7i + j - 6k$ (15)

أوجد مساحة متوازي الأضلاع الذي فيه \mathbf{u} , \mathbf{v} ضلعان متجاوران في كلِّ مما يأتى: (مثال 4)

$$\mathbf{u} = \langle -9, 1, 2 \rangle, \mathbf{v} = \langle 6, -5, 3 \rangle$$
 (16)

$$\mathbf{u} = \langle 4, 3, -1 \rangle$$
, $\mathbf{v} = \langle 7, 2, -2 \rangle$ (17)

$$u = 6i - 2j + 5k$$
, $v = 5i - 4j - 8k$ (18)

$$u = i + 4j - 8k$$
, $v = -2i + 3j - 7k$ (19)

أوجد حجم متوازي السطوح الذي فيه t, u, v أحرف متجاورة في كلِّ مما يأتى: (مثال 5)

$$\mathbf{t}=\langle -1,-9,2\rangle,\,\mathbf{u}=\langle 4,-7,-5\rangle,\,\mathbf{v}=\langle 3,-2,6\rangle$$
 (20

$$t = \langle 2, -3, -1 \rangle, u = \langle 4, -6, 3 \rangle, v = \langle -9, 5, -4 \rangle$$
 (21)

$$t = i + j - 4k$$
, $u = -3i + 2j + 7k$, $v = 2i - 6j + 8k$ (22

$$t = 5i - 2j + 6k$$
, $u = 3i - 5j + 7k$, $v = 8i - j + 4k$ (23

أوجد متجهًّا غير صفري يعامد المتجه المُعطى في كلِّ ممَّا يأتي:

$$(3, -8, 4)$$
 (24)

$$\langle -1, -2, 5 \rangle$$
 (25)

$$\left<6, -\frac{1}{3}, -3\right>$$
 (26

إذا عُلم كلٌّ من ٧, ١٠ ، فأوجد حالةً ممكنةً للمتجه ١ في كلِّ مما يأتي:

$$\mathbf{v} = \langle 2, -4, -6 \rangle, \mathbf{u} \cdot \mathbf{v} = -22$$
 (28)

$$\mathbf{v} = \left\langle \frac{1}{2}, 0, 4 \right\rangle, \mathbf{u} \cdot \mathbf{v} = \frac{31}{2}$$
 (29)

$$\mathbf{v} = \langle -2, -6, -5 \rangle, \mathbf{u} \cdot \mathbf{v} = 35$$
 (30)

حدّد ما إذا كانت النقاط المعطاة واقعةً على استقامةٍ واحدةٍ أم لا؟

$$(-1, 7, 7), (-3, 9, 11), (-5, 11, 13)$$
 (31)

$$(11, 8, -1), (17, 5, -7), (8, 11, 5)$$
 (32)

حدّد ما إذا كان كل متجهين مما يأتي متوازيين أم لا:

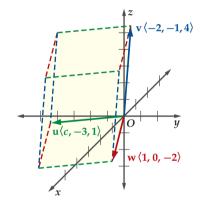
$$\mathbf{m} = \langle 2, -10, 6 \rangle, \mathbf{n} = \langle 3, -15, 9 \rangle$$
 (33)

$$a = \langle 6, 3, -7 \rangle, b = \langle -4, -2, 3 \rangle$$
 (34

نقم في المستوى yz اكتب الصورة الإحداثية للمتجه u الذي يقع في المستوى y وطوله 8، ويصنع زاويةً قياسها 60° فوق الاتجاه الموجب للمحور y.

حدّد ما إذا كان الشكل الرباعي ABCD المُعطاة إحداثيات رؤوسه متوازي أضلاع أم لا، وإذا كان كذلك، فأوجد مساحته، وحدِّد ما إذا كان مستطيلًا أم لا:

$$A(3,0,-2), B(0,4,-1), C(0,2,5), D(3,2,4)$$
 (36)


A(7,5,5), B(4,4,4), C(4,6,2), D(7,7,3) (37)

38) عرض جوي: أقلعت طائرتان معًا في عرض جوي، فأقلعت الأولى من موقع إحداثياته (0, -2, 0)، وبعد (0, -2, 0)، في حين أقلعت الثانية من موقع إحداثياته (0, 2, 0)، وبعد (0, 2, 0)، وصلت موقعًا إحداثياته (0, 2, 0). هل يتو ازى خطًّا سير الطائرتين؟ وضِّح إجابتك.

إذا كان: $\mathbf{u}=\langle 3,2,-2\rangle$, $\mathbf{v}=\langle -4,4,5\rangle$ إذا كان:

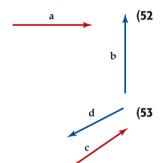
- $u \cdot (u \times v)$ (39
- $\mathbf{v} \times (\mathbf{u} \cdot \mathbf{v})$ (40

41) إذا كانت V, W, u تُمثِّل ثلاثة أحرف متجاورة لمتوازي السطوح في الشكل المجاور، وكان حجمه 7 وحداتٍ مكعبةٍ، فما قيمة °C

مسائل مهارات التفكير العليا

- 42) **تبرير:** حدّد ما إذا كانت العبارة الآتية صحيحة أحيانًا، أو صحيحة دائمًا، أو غير صحيحة أبدًا، برِّر إجابتك.
- «لأي متجهين غير صفريين وغير متوازيين، يوجد متجه عمودي على هذين المتجهين».
 - ناوجد $\mathbf{u}=\langle 4,6,c\rangle$, $\mathbf{v}=\langle -3,-2,5\rangle$ ، فأوجد (43 مالتی تجعل: $\mathbf{u}\times\mathbf{v}=34\mathbf{i}-26\mathbf{j}+10\mathbf{k}$
 - **44) تبرير:** فسِّر لماذا لا يمكن تعريف الضرب الاتجاهي في المستوى.
 - 45) اكتب: بيِّن طرق الكشف عن توازى متجهَين أو تعامدهما.

مراجعة تراكمية


أوجد طول كل قطعة مستقيمة مما يأتي، والمعطاة نقطتا طرفيها، ثم أوجد إحداثيات نقطة منتصفها: (الدرس 1-4)

- (1, 10, 13), (-2, 22, -6) (46)
- (12, -1, -14), (21, 19, -23) **(47**
 - (-22, 24, -9), (10, 10, 2) **(48**

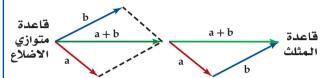
أوجد الضرب الداخلي للمتجهين \mathbf{u} , \mathbf{v} في كلِّ ممَّا يأتي، ثم حدّد ما إذا كانا متعامدين أم \mathbf{v} : (المدرس \mathbf{v} -1)

- $\langle -8, -7 \rangle \cdot \langle 1, 2 \rangle$ (49)
- $\langle -4, -6 \rangle \cdot \langle 7, 5 \rangle$ (50
- $(6, -3) \cdot (-3, 5)$ (51

أوجد محصلة كل زوج من المتجهات الآتية، مُستعملًا قاعدة المثلث أو متوازي الأضلاع، ثم حدّد اتجاهها بالنسبة للأفقى. (الدرس 1-1)

تدريب على اختبار

- 54) أيُّ مما يأتي متجهان متعامدان؟
 - $\langle 1, 0, 0 \rangle$, $\langle 1, 2, 3 \rangle$ **A**
- $\langle 1, -2, 3 \rangle$, $\langle 2, -4, 6 \rangle$ **B**
 - (3, 4, 6), (6, 4, 3) **C**
- (3, -5, 4), (6, 2, -2) **D**
- : ما حاصل الضرب الاتجاهي للمتجهين $\mathbf{v} = \langle 3, 8, 0 \rangle$, $\mathbf{v} = \langle -4, 2, 6 \rangle$
 - 48i 18j + 38k A
 - 48i 22j + 38k B
 - 46i 22j + 38k C
 - 46i 18j + 38k **D**


43

ملخص الفصل

مفاهيم أساسية

مقدمة في المتجهات (الدرس ١-١)

- يُعبّر عن اتجاه المتجه بالزاوية بين المتجه، والأفقى. ومقدار المتحه هو طوله.
- ناتج جمع متجهين هو متجه يُسمى المحصِّلة، ويمكن إيجاده باستعمال قاعدة المثلث، أو قاعدة متوازى الأضلاع.

المتجهات في المستوى الإحداثي (الدرس 2-1)

- الصورة الإحداثية للمتجه في الوضع القياسي هي $\langle x, y \rangle$.
 - الصورة الإحداثية للمتجه في الوضع غير القياسي الذي :فطة بدايته $B(x_2,y_2)$ ، ونقطة نهايته $B(x_2,y_1)$ هي $\langle x_2 - x_1, y_2 - y_1 \rangle$
 - يعطى طول المتجه $\mathbf{v} = \langle v_1, v_2 \rangle$ بالصيغة $|\mathbf{v}| = \sqrt{(v_1)^2 + (v_2)^2}$
- k اخان: (b_1,b_2) متجهین، وکان $\mathbf{a}=\langle a_1,a_2\rangle$ باذا کان $\mathbf{b}=\langle b_1,b_2\rangle$ ، ${f a}+{f b}=\langle a_1+b_1,a_2+b_2 \rangle$ عددًا حقيقيًّا، فإن: $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$, $k \mathbf{a} = \langle k a_1, k a_2 \rangle$
 - يمكن استعمال متجهّى الوحدة \mathbf{j} ، \mathbf{i} للتعبير عن المتجه . $a\mathbf{i}+b\mathbf{j}$ على الصورة $\mathbf{v}=\langle a,b
 angle$

الضرب الداخلي (الدرس 3-1)

- ، $\mathbf{a} = \langle a_1, a_2 \rangle$: يُعرَّف الضرب الداخلي للمتجهين $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$ بالصيغة: $\mathbf{b} = \langle b_1, b_2 \rangle$
- إذا كانت heta زاوية بين متجهين غير صفريين heta ، فإن: $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$

المتجهات في الفضاء الثلاثي الأبعاد (الدرس 1-4)

 $A(x_1, y_1, z_1)$ تعطى المسافة بين النقطتين • بالصيغة: $B(x_2, y_2, z_2)$

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• تعطى نقطة منتصف \overline{AB} بالصيغة:

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

الضرب الداخلي والضرب الاتجاهي لمتجهين في الفضاء (الدرس 5-1)

- ، $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$: يُعرّف الضرب الداخلي للمتجهين $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ بالصيغة $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$
- $a = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}, \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ إذا كان: فإن الضرب الاتجاهى للمتجهين a imes b هو a imes b ، ويساوى $(a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$

المضردات

المركبات ص 14 كمية قياسية عددية ص 10 المتجه ص 10 كمية متجهة ص 10 قطعة مستقيمة متجهة ص 10 نقطة البداية ص 10 نقطة النهاية ص 10 طول المتجه ص 10 الوضع القياسي ص 10 اتجاه المتجه ص 10 الاتجاه الربعي ص 11 الاتجاه الحقيقي ص 11 المتجهات المتوازية ص 11 المتجهات المتساوية ص 11 المتجهان المتعاكسان ص 11 المحصلة ص 12 قاعدة المثلث ص 12 قاعدة متوازي الأضلاع ص 12 المتجه الصفرى ص 13

المركبات المتعامدة ص 14 الصورة الإحداثية ص 18 متجه الوحدة ص 20 متجها الوحدة القياسيّان ص 20 توافق خطِّيٌّ ص 21 الضرب الداخلي ص 26 المتجهان المتعامدان ص 26 الشغل ص 29 نظام الإحداثيات الثلاثي الأبعاد ص 33 المحور Z ص 33 الثُّمن ص 33 الثلاثي المرتب ص 33 الضرب الاتجاهى ص 40 متوازى السطوح ص 41 الضرب القياسي الثلاثي ص 41

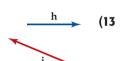
اختسر مفرداتك

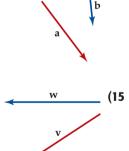
حدّد ما إذا كانت العبارات الآتية صحيحة أم خاطئة، وإذا كانت خاطئة فاستبدل ما تحته خط لتصبح العبارة صحيحة:

- 1) نقطة نهاية المتجه هي الموقع الذي يبدأ منه .
- يان الضرب الداخلى ، $\mathbf{a}=\langle -4,1\rangle$, $\mathbf{b}=\langle 3,2\rangle$ إذا كان: $\mathbf{a}=\langle -4,1\rangle$ -4(1) + 3(2) للمتجهين هو
- $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ نقطة منتصف \overline{AB} عندما تكون (3 . $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$ هي
- B(2, -4) طول المتجه الذي نقطة بدايته (A(-1, 2) ، ونقطة نهايته (4
- 5) يتساوَى متجهان إذا وفقط إذا كان لهما الطول نفسه، والاتجاه نفسه.
 - 6) إذا تعامد متجهان غير صفريين، فإن قياس الزاوية بينهما <u>180°</u>.
- 7) لتجد متجهًا يعامد أي متجهين على الأقل في الفضاء، أو جد الضرب الاتجاهي للمتجهين الأصليين.
 - 8) طرح متجه یکافئ إضافة معکوس المتجه.
 - $\mathbf{v} = \frac{|\mathbf{u}|}{\mathbf{u}}$ إذا كان \mathbf{v} متجه وحدةٍ باتجاه \mathbf{u} ، فإن \mathbf{v}

وزارة التعليم Ministry of Education 2021 - 1443

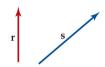
مراجعة الدروس


مقدمة في المتجهات (الصفحات 17-10)


حدِّد الكميات المتجهة، والكميات القياسية في كلِّ مما يأتي:

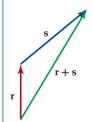
- 10) تسير سيارة بسرعة 50 mi/h باتجاه الشرق.
 - 11) شجرة طولها 20ft.

أوجد محصلة كل زوج من المتجهات الآتية باستعمال قاعدة المثلث، أو قاعدة متوازي الأضلاع. قرِّب المحصلة إلى أقرب جزء من عشرة من السنتمتر، ثم حدِّد اتجاهها بالنسبة للأفقى، مستعملًا المسطرة، والمنقلة.

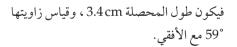


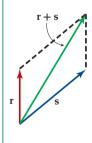
أوجد طول المحصِّلة لناتج جمع المتجهين واتجاهها في كلِّ مما يأتي:

- 70 m (16 جهة الغرب، ثم 150 m جهة الشرق.
 - 8N (17 للخلف، ثم 12N للخلف.


مثال 1

أوجد محصلة المتجهين s, r مستعملًا قاعدة المثلث، أو قاعدة متوازي الأضلاع. قرِّب المحصّلة إلى أقرب جزء من عشرة من السنتمتر، ثم حدِّد اتجاهها بالنسبة للأفقي مستعملًا المسطرة، والمنقلة.


قاعدة المثلث


اسحب r ، بحيث تلتقي نقطة نهاية r مع نقطة بداية s ، فتكون المحصلة هي المتجه الذي يبدأ من نقطة بداية r ، وينتهى عند نقطة نهاية s.

قاعدة متوازي الأضلاع

اسحب s ، بحيث تلتقي نقطة بدايته مع نقطة بداية r ، ثم أكمل متوازي الأضلاع الذي فيه r , s ضلعان متجاوران، فتكون المحصلة هي المتجه الذي يكوّن قطر متوازي الأضلاع.

صلحتا قرازم Ministry of Education 2021 - 1443

أوجد الصورة الإحداثية، وطول \overline{AB} المعطاة نقطتا بدايته ونهايته في كلِّ مما يأتى:

$$A(-1,3), B(5,4)$$
 (18

$$A(7, -2), B(-9, 6)$$
 (19

$$A(-8, -4), B(6, 1)$$
 (20

$$A(2, -10), B(3, -5)$$
 (21)

إذَا كَانَ:
$$\mathbf{p}=\langle 4,0 \rangle$$
 , $\mathbf{q}=\langle -2,-3 \rangle$, $\mathbf{t}=\langle -4,2 \rangle$ ، فأوجد كلَّا ممَّا يأتي:

$$2q - p$$
 (22)

$$p + 2t$$
 (23)

$$t - 3p + q$$
 (24)

$$2p + t - 3q$$
 (25)

أو جد متجه وحدة u باتجاه v في كلِّ مما يأتي:

$$v = (3, -3)$$
 (27)

$$v = \langle -7, 2 \rangle$$
 (26)

1-3

$$v = (9, 3)$$
 (29

$$\mathbf{v} = \langle -5, -8 \rangle$$
 (28)

أوجد الضرب الداخلي للمتجهين u, v في كلِّ ممَّا يأتي، ثم تحقَّق ممَّا إذا كانا متعامدين أم لا:

الضرب الداخلي (الصفحات 31 - 26)

$$\mathbf{u} = \langle -3, 5 \rangle, \mathbf{v} = \langle 2, 1 \rangle$$
 (30

$$u = \langle 4, 4 \rangle, v = \langle 5, 7 \rangle$$
 (31)

$$\mathbf{u} = \langle -1, 4 \rangle, \mathbf{v} = \langle 8, 2 \rangle$$
 (32)

$$u = \langle -2, 3 \rangle, v = \langle 1, 3 \rangle$$
 (33)

أوجد الزاوية $oldsymbol{ heta}$ بين المتجهين $oldsymbol{ heta}$ في كلِّ ممَّا يأتي:

$$\mathbf{u} = \langle 5, -1 \rangle, \mathbf{v} = \langle -2, 3 \rangle$$
 (34)

$$\mathbf{u} = \langle -1, 8 \rangle, \mathbf{v} = \langle 4, 2 \rangle$$
 (35)

مـثال 2

أوجد الصورة الإحداثية، وطول \overline{AB} الذي نقطة بدايته A(3,-2) .

الصورة الإحداثية
$$\overrightarrow{AB}=\langle x_2-x_1,y_2-y_1
angle$$
 عوّض
$$=\langle 4-3,-1-(-2)
angle$$

$$=\langle 1,1
angle$$
 Induction

 \overrightarrow{AB} أوجد طول المتجه

قانون المسافة
$$|\overline{AB}|=\sqrt{a^2+b^2}$$
 $=\sqrt{1^2+1^2}$ $=\sqrt{2}pprox1.4$

مـثال 3

، $\mathbf{x}=\langle 2,-5\rangle$, $\mathbf{y}=\langle -4,7\rangle$ أوجد الضرب الداخلي للمتجهين ($\mathbf{x}=\langle 2,-5\rangle$

الضرب الداخلي
$$\mathbf{x} \bullet \mathbf{y} = x_1 y_1 + x_2 y_2$$
 $= 2(-4) + (-5)(7)$ $= -8 + (-35) = -43$

بما أن $\mathbf{y} \neq \mathbf{0}$ ، فإن المتجهين \mathbf{y} ، \mathbf{x} غير متعامدين.

المتجهات في الفضاء الثلاثي الأبعاد (الصفحات 38 - 33)

عيِّن كل نقطة من النقاط الآتية في الفضاء الثلاثي الأبعاد:

$$(1, 2, -4)$$
 (36)

1-4

$$(5, -3, -2)$$
 (38)

$$(-2, -3, -2)$$
 (39)

أوجد طول القطعة المستقيمة المُعطاة نقطتا طرفَيها في كلِّ مما يأتي، ثم أوجد إحداثيات نقطة منتصفها.

$$(-4, 10, 4), (2, 0, 8)$$
 (40

$$(-5, 6, 4), (-9, -2, -2)$$
 (41)

$$(3, 2, 0), (-9, -10, 4)$$
 (42

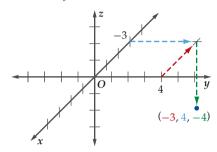
$$(8, 3, 2), (-4, -6, 6)$$
 (43

مثّل بيانيًّا كلًّا من المتجهات الآتية في الفضاء:

$$\mathbf{a} = \langle 0, -3, 4 \rangle$$
 (44)

$$b = -3i + 3j + 2k$$
 (45)

$$c = -2i - 3j + 5k$$
 (46)


$$d = \langle -4, -5, -3 \rangle$$
 (47)

1-5

مـثال 4

عيّن النقطة (4, -4, 3) في الفضاء الثلاثي الأبعاد.

حدّد موقع النقطة (3,4) في المستوى xy بوضع إشارة، ثم عيّن نقطةً تبعد 4 وحداتٍ أسفل هذه النقطة، وباتجاه مواز للمحور z.

الضرب الداخلي والضرب الاتجاهي للمتجهات في الفضاء (الصفحات 43 - 39)

حدّد ما إذا أوجد الضرب ا

أوجد الضرب الداخلي للمتجهين v , u في كلِّ مما يأتي، ثم حدّد ما إذا كانا متعامدين أم لا.

$$\mathbf{u} = \langle 2, 5, 2 \rangle, \mathbf{v} = \langle 8, 2, -13 \rangle$$
 (48

$$\mathbf{u} = \langle 5, 0, -6 \rangle, \mathbf{v} = \langle -6, 1, 3 \rangle$$
 (49)

أوجد الضرب الاتجاهي للمتجهين \mathbf{v} , \mathbf{u} في كلِّ مما يأتي، ثم بيِّن أن \mathbf{v} \mathbf{v} عامد كلًا من \mathbf{v} , \mathbf{v} :

$$\mathbf{u} = \langle 1, -3, -2 \rangle, \mathbf{v} = \langle 2, 4, -3 \rangle$$
 (50

$$\mathbf{u} = \langle 4, 1, -2 \rangle, \mathbf{v} = \langle 5, -4, -1 \rangle$$
 (51)

مـثال 5

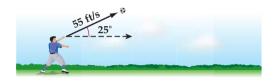
 $\mathbf{u} = \langle -4, 2, -3 \rangle$ أوجد الضرب الاتجاهي للمتجهين: $\mathbf{u} \times \mathbf{v} = \langle 7, 11, 2 \rangle$. $\mathbf{u} \times \mathbf{v}$ يعامد كلَّا من

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} 2 & -3 \\ 11 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -4 & -3 \\ 7 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -4 & 2 \\ 7 & 11 \end{vmatrix} \mathbf{k}$$
$$= \langle 37, -13, -58 \rangle$$

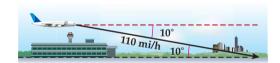
$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = \langle 37, -13, -58 \rangle \cdot \langle -4, 2, -3 \rangle$$

= -148 - 26 + 174 = 0 \(\mathbf{v} \)

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = \langle 37, -13, -58 \rangle \cdot \langle 7, 11, 2 \rangle$$


بعه ان عاصل الصرب الماء علي في العامليل يسا صفرًا، فإن v × u عمو دي على كلِّ من uľv

ارة التعليم Ministry of Education 2021 - 1443


دليل الدراسة والمراجعة

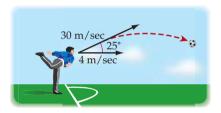
تطبيقات ومسائل

52) كرة قدم: تلقَّى لاعب كرة قدم الكرة برأسه، فارتدَّت بسرعة ابتدائية مقدارها 55 ft/s، وبزاوية قياسها 25° فوق الأفقي كما في الشكل أدناه. أو جد مقدار كلِّ من المركبتين الأفقية، والرأسية للسرعة. (الدرس 1-1)

53) طيران: تهبط طائرة بسرعة مقدارها 110 mi/h ، وبزاوية قياسها °10 تحت الأفقي، أوجد الصورة الإحداثية للمتجه الذي يُمثّل سرعة الطائرة. (الدرس 1-2)

54) صناديق: يدفع عامل صندوقًا بقوة ثابتة مقدارها 90N بزاوية °45 في الشكل أدناه. أوجد الشغل المبذول بالجول لتحريك الصندوق 8m (مع إهمال قوة الاحتكاك). (الدرس 1-1)

- 55) أقمار اصطناعية: إذا مَثَّلت النقطتان: (38426, 32461, -38426)، (28625, 32461, -38426) موقِعَي قمرين اصطناعيين، ومَثَّلَتِ النقطة (0,0,0) مركز الأرض، وعلمت أن الإحداثيات معطاة بالميل، وأن طول نصف قطر الأرض يساوي 3963 mi تقريبًا، فأجب عمَّا يأتي: (الدرس 4-1)
 - a) أوجد المسافة بين القمرين.
 - **(b)** إذا وضع قمر ثالث في منتصف المسافة بين القمرين، فما إحداثيات موقعه؟
 - اشرح إمكانية وضع قمر ثالث في الإحداثيات التي أوجدتها في الفرع b.
 - 56) استعمل الضرب القياسي الثلاثي لحساب حجم غرفةٍ أبعادها 3 m, 4 m, 5 m "إرشاد: اعتبر متوازي المستطيلات حالةً خاصةً من متوازي السطوح". (الدرس 1-1)


أوجد محصِّلة كل زوج من المتجهات الآتية باستعمال قاعدة المثلث، أو قاعدة متوازي الأضلاع، قرِّب المحصلة إلى أقرب جزءٍ من عشرةٍ من السنتمتر، ثم حدِّد اتجاهها بالنسبة للأفقى مستعملًا المسطرة، والمنقلة.

$$\begin{array}{c}
c \\
d
\end{array}$$
(2)

أوجد الصورة الإحداثية، وطول \overline{AB} المعطاة نقطتا بدايته ونهايته في كلِّ مما يأتى:

$$A\left(\frac{1}{2}, \frac{3}{2}\right), B(-1, 7)$$
 (4 $A(1, -3), B(-5, 1)$ (3

5) كرة قدم: ركض لاعب بسرعة 4 m/s؛ للتصدي لكرة قادمة من الاتجاه المعاكس لحركته، فضربها برأسه بسرعة 30 m/s، وبزاوية قياسها 25° مع الأفقي، فما محصّلة سرعة الكرة، واتجاه حركتها؟

أوجد متجه وحدة باتجاه ١١ في كلِّ مما يأتي:

$$\mathbf{u}=\langle 6,-3 \rangle$$
 (7
$$\mathbf{u}=\langle -1,4 \rangle$$
 (6

أوجد الضرب الداخلي للمتجهين w , w في كلِّ مما يأتي، ثم بيّن ما إذا كانا متعامدين أم لا:

$$\mathbf{u} = \langle 2, -5 \rangle, \mathbf{v} = \langle -3, 2 \rangle$$
 (8)

$$u = \langle 4, -3 \rangle, v = \langle 6, 8 \rangle$$
 (9

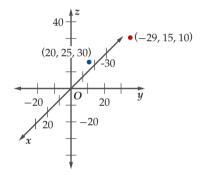
$$u = 10i - 3j, v = i + 8j$$
 (10)

 $\mathbf{u} = \langle 1, 3 \rangle$, $\mathbf{v} = \langle -4, 2 \rangle$ أن: (11 علمت أن: $\mathbf{v} = \langle -4, 2 \rangle$ مما يأتي يُمثّل ناتج جمع متجهين متعامدين أحدهما مسقط \mathbf{v} على \mathbf{v} على \mathbf{v} على \mathbf{v} ؟

$$\mathbf{u} = \left\langle \frac{2}{5}, -\frac{3}{5} \right\rangle + \left\langle \frac{3}{5}, \frac{18}{5} \right\rangle \ \mathbf{A}$$

$$\mathbf{u} = \left\langle \frac{2}{5}, \frac{3}{5} \right\rangle + \left\langle \frac{3}{5}, \frac{12}{5} \right\rangle \mathbf{B}$$

$$\mathbf{u} = \left\langle -\frac{4}{5}, \frac{2}{5} \right\rangle + \left\langle \frac{9}{5}, \frac{13}{5} \right\rangle \mathbf{C}$$


$$\mathbf{u} = \left\langle -\frac{2}{5}, \frac{1}{5} \right\rangle + \left\langle \frac{7}{5}, \frac{14}{5} \right\rangle \ \mathbf{D}$$

، $\mathbf{a}=\langle 2,4,-3\rangle$, $\mathbf{b}=\langle -5,-7,1\rangle$, $\mathbf{c}=\langle 8,5,-9\rangle$ إذا كان: $\mathbf{b}=\langle -5,-7,1\rangle$, $\mathbf{c}=\langle 8,5,-9\rangle$ فأوجد كلَّا مما يأتي:

$$2a + 5b - 3c$$
 (12)

$$b - 6a + 2c$$
 (13)

14) بالونات الهواء الساخن: أُطلق 12 بالونّا تحوي هواءً ساخنًا في أحد المهرجانات، وبعد عدة دقائق من الإطلاق، كانت إحداثيات البالونين الأول والثاني هي: (10, 15, 10) , (20, 25, 30) كما في الشكل أدناه، علمًا بأن الإحداثيات معطاة بالأقدام.

- a) أوجد المسافة بين البالونين الأول والثاني في تلك اللحظة.
- (b) إذا كان البالون الثالث عند نقطة منتصف المسافة بين البالونين الأول والثاني، فأوجد إحداثياته.

أوجد الزاوية θ بين المتجهين \mathbf{u} , \mathbf{v} في كلِّ ممَّا يأتي:

$$\mathbf{u} = \langle -2, 4, 6 \rangle, \mathbf{v} = \langle 3, 7, 12 \rangle$$
 (15)

$$\mathbf{u} = -9\mathbf{i} + 5\mathbf{j} + 11\mathbf{k}, \mathbf{v} = -5\mathbf{i} - 7\mathbf{j} - 6\mathbf{k}$$
 (16)

أوجد الضرب الاتجاهي للمتجهين \mathbf{u} , \mathbf{v} في كلِّ مما يأتي، ثم بيّن أن $\mathbf{u} \times \mathbf{v}$ يعامد كلَّا من \mathbf{u} .

$$\mathbf{u} = \langle 1, 7, 3 \rangle, \mathbf{v} = \langle 9, 4, 11 \rangle$$
 (17)

$$\mathbf{u} = -6\mathbf{i} + 2\mathbf{j} - \mathbf{k}, \mathbf{v} = 5\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$$
 (18)

pيلرة التعليم Ministry of Education 2021 - 1443

افصل **2**

الإحداثيات القطبية والأعداد المركبة Polar Coordinates and Complex Numbers

وقينها رسينقره

درست القطوع المخروطية ومعادلاتها وتمثيلها بيانيًا.

روا الكرت ل

- أُمثِّلُ الإحداثيات القطبية بيانيًا.
 - أحولُ بين الإحداثيات والمعادلات الديكارتية والقطبية.
- أكتب الأعداد المركبة على
 الصورة القطبية والصورة
 الديكارتية وأحول بينهما.

المادا ا

🥡 تصامیم هندسیة:

يمكن استعمال المعادلات القطبية في عمل تصاميم هندسية فمثلًا لوحة سهام تظهر عليها المواقع بوصفها أعدادًا مركبة على الصورتين القطبية والديكارتية. كما أنماط الصوت التي تساعد على تحديد وضعية تجهيزات المسرح، مثل: السماعات ومكبرات الصوت، وتحديد وقستوى

قراءة سابقة: اقرأ عناوين الدروس والمفردات الأساسية في هذا الفصل؛ لتساعدك على التنبؤ بالأفكار التي ستتعلمها في هذا الفصل.

التهيئة للفصل 2

مراجعة المفردات

(Initial Side of an Angle) $\frac{\partial}{\partial x}$ النصلع المنطبق على المحور x عندما تكون الزاوية في الوضع القياسي.

ضلع الانتهاء للزاوية (Terminal Side of an Angle) الضلع الذي يدور حول نقطة الأصل عندما تكون الزاوية في الوضع القياسي.

(Measure of an Angle) قياس الزاوية

يكون قياس الزاوية موجبًا إذا دار ضلع الانتهاء عكس اتجاه عقارب الساعة. ويكون سالبًا إذا دار ضلع الانتهاء في اتجاه عقارب الساعة.

متطابقات المجموع والفرق (Sum and Difference Identities)

• $\sin(A+B) = \sin A \cos B + \cos A \sin B$

• $\cos(A+B) = \cos A \cos B - \sin A \sin B$

• $\sin (A - B) = \sin A \cos B - \cos A \sin B$

• $\cos (A - B) = \cos A \cos B + \sin A \sin B$

اختبارسريع

ارسم كلًّا من الزاويتين المعطى قياسهما فيما يأتي في الوضع القياسي:

200° **(1**

 -45° (2

أوجد زاوية بقياس موجب، وأخرى بقياس سالب مشتركتين في ضلع الانتهاء مع كل من الزوايا الآتية، ومثِّلهما في الوضع القياسي:

165° **(3**

−10° **(4**

 $\frac{4\pi}{3}$ (5

 $-\frac{\pi}{4}$ (6

حوِّل قياس الزاوية المكتوبة بالدرجات إلى الراديان، والمكتوبة بالراديان إلى درجات في كل مما يأتي:

$$\frac{3\pi}{2}$$
 (8 — -60° (7

و) أوجد القيمة الدقيقة لـ sin 15 باستعمال متطابقة الفرق بين زاويتين.

10) أوجد طول الضلع AC في المثلث المرسوم أدناه (قرِّب إلى أقرب جزء من عشرة).

2-1

رفيونا رسياق:

www ien edu s

الإحداثيات القطبية Polar Coordinates

iai coordinates

الماذا

درست الزوايا الموجبة والسالبة ورسمتها في الوضع القياسي. (مهارة سابقة)

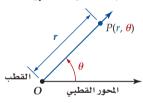
رواالارن

- أُمثًل نقاطًا بالإحداثيات القطبية.
- أُمثًل بيانيًا معادلات قطبية بسيطة.

المفردانة

نظام الإحداثيات القطبية
polar coordinate system
القطب
pole
المحور القطبي
polar axis
الإحداثيات القطبية
polar coordinates
المعادلة القطبية
polar equation
التمثيل القطبي

يَستعملُ مراقبو الحركة الجوية أنظمةَ رادار حديثة لتوجيه مسار الطائرات، والحصول على مسارات ورحلات جوية آمنة. وهذا يضمن بقاء الطائرة على مسافة آمنة من الطائرات الأخرى، والتضاريس الأرضية. ويستعمل الرادار قياسات الزوايا والمسافات المتجهة؛ لتمثيل موقع الطائرة. ويقوم المراقبون


فياسات الزوايا والمسافات المتجهه؛ لتمثيل موقع الطائرة. ويقوم المرافبو بتبادل هذه المعلومات مع الطيارين.

تمثيل الإحداثيات القطبيّة لقد تعلمتَ التمثيلَ البياني لمعادلات معطاة في نظام الإحداثيات الديكارتيّة (المستوى الإحداثي). وعندما يحدد مراقبو الحركة الجوية موقع الطائرة باستعمال المسافات والزوايا، فإنهم يستعملون نظام الإحداثيات القطبية (المستوى القطبي).

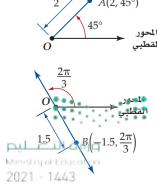
في نظام الإحداثيات الديكارتية، المحوران x, y هما المحوران الأفقي والرأسي على الترتيب، وتُسمَّى نقطة تقاطعهما نقطة الأصل، ويرمز لها بالحرف O. ويُعيَّنُ موقع النقطة P بالإحداثيات الديكارتية من خلال زوج مرتب P, P ميث P المسافتان المتجهتان الأفقية، والرأسية على الترتيب من المحورين إلى النقطة. فمثلًا، تقع النقطة P0, على بُعد وحدة وحدة إلى يمين المحور P1, وعلى بُعد P2 بعد P3 بعد P4 وحدة إلى المحور P3 وعلى بُعد P4 وحدة إلى المحور P3 وعلى بُعد P4 وحدة إلى المحور P5 وعلى بُعد P9 وحدة إلى المحور P9 وعلى بُعد P9 وحدة إلى المحور P9 وعلى بُعد P9 وحدة إلى المحور P9 وعلى المحور P9 بين المحور P9 وعلى بُعد P9 وحدة إلى أعلى المحور P9 وعلى المحور P9 بين المحور P9 وعلى المحدد وحدة وحدة المحدد المحدد وحدد المحدد المحدد وحدد المحدد المحدد

نظام الإحداثيات القطبية

في نظام الإحداثيات القطبية، نقطة الأصل O نقطة ثابتة تُسمى القطب. والمحور القطبي هو نصف مستقيم يمتد أفقيًّا من القطب إلى اليمين. يمكن تعيين موقع نقطة P في نظام الإحداثيات القطبية باستعمال **الإحداثيات** يمكن تعيين موقع نقطة P في نظام الإحداثيات القطبية واتجاهًا، فمن الممكن أن تكون P سالبة) من القطب إلى النقطة P، و P الزاوية المتّجهة (أي تتضمن قيمةً واتجاهًا) من المحور القطبيّ إلى \overline{OP} .

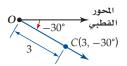
القياس الموجب للزاوية θ يعني دورانًا بعكس اتجاه عقارب الساعة بدءًا من المحور القطبي، في حين يعني القياس السالب دورانًا باتجاه عقارب الساعة، ولتمثيل النقطة P بالإحداثيات القطبيّة، فإن P تقع على ضلع الانتهاء للزاوية θ إذا كانت r موجبة. أما إذا كانت سالبة، فإن P تقع على نصف المستقيم المقابل (الامتداد) لضلع الانتهاء للزاوية θ .

مثال 1 تمثيل الإحداثيات القطبية


مثّل كل نقطة من النقاط الآتية في المستوى القطبي:

 $A(2, 45^{\circ})$ (a

بما أن $^{2}45$ ، فارسم ضلع الانتهاء للزاوية $^{3}6$ ، بحيث يكون المحور القطبي هو ضلع الابتداء لها، ولأن 2 ، لذا عيِّن نقطةً 3 4 2 تعند وحدتين عن القطب على ضلع الانتهاء للزاوية 3 ، كما في الشكل المجاور.


 $B\left(-1.5, \frac{2\pi}{3}\right)$ (b)

بما أن $\frac{2\pi}{3}=\theta$ ، لذا ارسم ضلع الانتهاء للزاوية $\frac{2\pi}{3}$ ، بحيث يكون المحور القطبي هو ضلع الابتداء لها، ولأن r سالبة، لذا مُدَّ ضلع الانتهاء في الاتجاه المقابل، وعيِّن نقطةً B تبعُد 1.5 وحدة عن القطب على امتداد ضلع الانتهاء، كما في الشكل المجاور.

$$C(3, -30^{\circ})$$
 (c

بما أن $^{\circ}30^{\circ} = \theta$ ، لذا ارسم ضلع الانتهاء للزاوية $^{\circ}30^{\circ}$ ، بحيث يكون المحور القطبي هو ضلع الابتداء لها، ولأن r = 3، لذا عيِّن نقطةً r = 3 تبعُد 3 وحدات عن القطب على ضلع الانتهاء للزاوية، كما في الشكل المجاور.

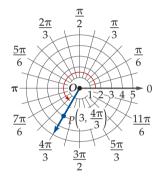
تحقق من فهمك

مثّل كل نقطة من النقاط الآتية:

$$F\left(4, -\frac{5\pi}{6}\right)$$
 (1C

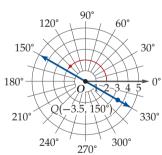
$$E(2.5, 240^{\circ})$$
 (1B)

$$D\left(-1,\frac{\pi}{2}\right)$$
 (1A


تُعيَّن الإحداثيات القطبية في المستوى القطبي الذي يتخذ شكلًا دائريًّا، كما تُعيَّنُ الإحداثيات الديكارتية في المستوى الإحداثي الذي يتخذ شكلًا مستطيلًا.

مثال 2 تمثيل النقاط في المستوى القطبي

مثّل كلًّا من النقاط الآتية في المستوى القطبي:


$P\left(3, \frac{4\pi}{3}\right)$ (a

بما أن $\frac{4\pi}{3}=\theta$ ، لذا ارسم ضلع الانتهاء للزاوية $\frac{4\pi}{3}$ ، بحيث يكون المحور القطبي هو ضلع الابتداء لها، و لأن r=3 ، لذا عيِّن نقطةً P تبعُد E وحدات عن القطب على ضلع الانتهاء للزاوية ، كما في الشكل المجاور .

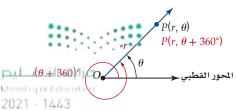
$Q(-3.5, 150^{\circ})$ (b

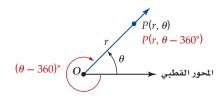
بما أن °150 = θ ، لذا ارسم ضلع الانتهاء للزاوية °150 ، بحيث يكون المحور القطبي ضلع الابتداء لها، ولأن r سالبة، لذا مُدَّ ضلع الانتهاء للزاوية في الاتجاه المقابل، وعيِّن نقطةً Q تبعد 3.5 وحدات عن القطب على امتداد ضلع الانتهاء للزاوية، كما في الشكل المجاور.

📫 تحقق من فهمك

مثِّل كلًّا من النقاط الآتية في المستوى القطبي:

$$R\left(1.5, -\frac{7\pi}{6}\right)$$
 (2A)

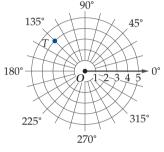

$$S(-2, -135^{\circ})$$
 (2B)


إرشادات للدراسة

القطب

يمكن تمثيل القطب بالنقطة $(0, \theta)$ ، حيث θ أي زاوية.

في نظام الإحداثيات الديكارتية كل نقطة يُعبَّر عنها بزوج وحيد من الإحداثيات (x, y). إلا أن هذا لا ينطبق على نظام الإحداثيات القطبية؛ وذلك لأن قياس كل زاوية يُكتب بعدد لانهائي من الطرائق؛ وعليه فإن للنقطة (r, θ) الإحداثيات $(r, \theta \pm 2\pi)$ أو $(r, \theta \pm 360^\circ)$ أيضًا كما هو مبيّن أدناه.


 $P(-r, \theta \pm 180^{\circ})$ $(\theta + 180)^{\circ}$ *

 (r, θ) فإن مسافة متجهة، فإن وكذلك لأن $(-r, \theta \pm \pi)$, $(-r, \theta \pm 180^{\circ})$ تمثِّل النقطة نفسها، كما في الشكل المجاور.

وبصورة عامة، إذا كان n عددًا صحيحًا، فإنه يمكن تمثيل النقطة (r, θ) بالإحداثيات $(r, \theta + 360^{\circ}n)$ أو انقطة $(-r, \theta + (2n + 1)180^\circ)$. وبالمثل، إذا كانت θ مقيسة بالراديان، وكان n عددًا صحيحًا، فإنه يمكن تمثيل النقطة $(-r, \theta + (2n+1)\pi)$ أو $(r, \theta + 2n\pi)$ بالإحداثيات (r, θ)

تمثيلات قطبية متعددة ماثال 3

إذا كانت $360^\circ \leq \theta \leq -360^\circ$ ، فأوجد أربعة أزواج مختلفة كل منها يمثّل إحداثيين قطبيين للنقطة T في الشكل المحاور.

أحد الأزواج القطبية التي تمثّل النقطة T هو ($^{\circ}4,135^{\circ}$). وفيما يأتي الأزواج الثلاثة الأخرى:

$$heta$$
 اطرح °360 من $(4, 135^\circ) = (4, 135^\circ - 360^\circ)$
= $(4, -225^\circ)$

بدلًا من
$$r$$
 و (4, 135°) = $(-4, 135^{\circ} + 180^{\circ})$

$$(4, 135^\circ) = (-4, 135^\circ - 180^\circ)$$

= $(-4, -45^\circ)$

 $= (-4, 315^{\circ})$

$$315^\circ$$
 نصع r بدلًا من r ، وأضف 180° إلى $heta$

$$heta$$
 ضع r - بدلًا من r ، واطرح 180° من $heta$

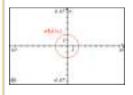
🗹 تحقق من فهمك

أوجد ثلاثة أزواج مختلفة كل منها يمثّل إحداثيين قطبيين للنقطة المعطاة، علمًا بأن: $-2\pi \le \theta \le 2\pi$ أو $-360^\circ \le \theta \le 360^\circ$

$$\left(-2, \frac{\pi}{6}\right)$$
 (3B (5, 240°) (3A

التمثيل البياني للمعادلات القطبية تُسمى المعادلة المعطاة بدلالة الإحداثيات القطبية معادلةً قطبيةً. فمثلًا: هي معادلة قطبية. التمثيل القطبي هو مجموعة كل النقاط (r, θ) التي تحقق إحداثياتها المعادلة القطبية. $r = 2 \sin \theta$

لقد تعلمت سابقًا كيفية تمثيل المعادلات في نظام الإحداثيات الديكارتية (في المستوى الإحداثي). ويُعدُّ تمثيل المعادلات مثل x=a أساسيًّا في نظام الإحداثيات الديكارتية. وبالمثل فإن التمثيل البياني لمعادلات قطبية مثل r=k ، و heta=0 ، حيث k , h عددان حقيقيان، يُعَدُّ أساسيًّا في نظام الإحداثيات القطبية .


إرشاد تقنى

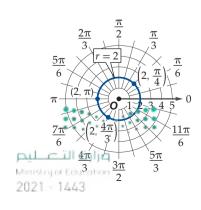
تمثيل المعادلات القطبية

لتمثيل المعادلة القطيية على الحاسبة البيانية r=2TI-nspire، اضغط

على أولًا ثم 🥌 وَ وغيّر وضع الرسم إلى

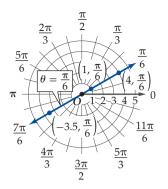
🐙 🌉 ، لاحظ أن f(x) المتغيَّر التابع تغيَّر من إلى ٢، والمتغيّر المستقل من r=2 الى θ . مثّل r=2

التمثيل البياني للمعادلات القطبية


مَثِّل كل معادلة من المعادلات القطبية الآتية بيانيًّا:

r=2 (a

مـثال 4


 $(2,\theta)$ من جميع النقاط على الصورة r=2 من تتكون حلول المعادلة r=2 من جميع النقاط على الصورة $(2,\frac{\pi}{4})$, $(2,\pi)$, $(2,\frac{4\pi}{3})$ عدد حقيقي فمثلًا تعد النقاط $(2,\frac{\pi}{4})$

يتكون التمثيل البياني من جميع النقاط التي تبعُد 2 وحدة عن القطب. وعليه فإن المنحني هو دائرة مركزها نقطة الأصل (القطب) ، وطول نصف قطرها 2 كما في الشكل المجاور.

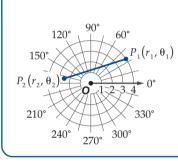
$$\theta = \frac{\pi}{6}$$
 (b

تتكوّن حلول المعادلة $\frac{\pi}{6} = \theta$ من جميع النقاط $\binom{r}{6}$, حيث r أي عدد حقيقي مثل النقاط $\binom{\pi}{6}$, $\binom{\pi}{6}$, $\binom{\pi}{6}$, $\binom{\pi}{6}$, $\binom{\pi}{6}$) وعليه فإن التمثيل البياني عبارة عن جميع النقاط الواقعة على المستقيم الذي يصنع زاوية $\frac{\pi}{6}$ مع المحور القطبي.

🗹 تحقق من فهمك

مَثِّل كل معادلة من المعادلات القطبية الآتية بيانيًّا:

يمكنُ إيجاد المسافة بين نقطتين في المستوى القطبي باستعمال الصيغة الآتية.


تنبيه(

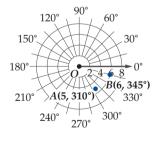
تهيئة الحاسبة البيانية عند استعمال صيغة المسافة القطبية، تأكد من ضبط الحاسبة البيانية على وضعية الدرجات، أو الراديان بحسب قياسات الزوايا المعطاة.

المسافة بالصيغة القطبية

افترض أن $P_2(r_2, \theta_2)$, $P_2(r_1, \theta_1)$, $P_2(r_2, \theta_2)$ نقطتان في المستوى القطبي، تُعطى المسافة $P_1(r_1, \theta_1)$, بالصيغة:

$$P_1 P_2 = \sqrt{{r_1}^2 + {r_2}^2 - 2r_1 r_2 \cos(\theta_2 - \theta_1)}$$

سوف تبرهن هذه الصيغة في السؤال 56


🥡 مثال 5 من واقع الحياة

إيجاد المسافة باستعمال الصيغة القطبية

حركة جوية: يتابع مراقبُ الحركة الجوية طائرتين تطيران على الارتفاع نفسه، حيث إحداثيات موقعي الطائرتين هما ($B(6,345^\circ)$, $B(6,345^\circ)$, وتقاس المسافة المتجهة بالأميال.

تقع الطائرة A على بُعد 5 mi من القطب، وعلى ضلع الانتهاء لزاوية قياسها °310، في حين تقع الطائرة B على بُعد 6 mi من القطب، وعلى ضلع الانتهاء لزاوية قياسها °345، كما في الشكل المجاور.

إذا كانت تعليمات الطيران تتطلب أن تكون المسافة بين الطائرتين أكثر من 3 mi
 مفهل تخالف هاتان الطائرتان هذه التعليمات؟ وَضِّح إجابتك.
 باستعمال الصيغة القطبية للمسافة، فإن.

$$AB = \sqrt{{r_1}^2 + {r_2}^2 - 2{r_1}{r_2}\cos{(\theta_2 - \theta_1)}}$$

$$(r_1, \theta_1) = (5, 310^\circ), (r_2, \theta_2) = (6, 345^\circ)$$

$$= \sqrt{5^2 + 6^2 - 2(5)(6)\cos{(345^\circ - 310^\circ)}} \approx 3.44$$

أي أن المسافة بين الطائرتين 3.44 mi تقريبًا؛ وعليه فإنهما لا تخالفان تعليمات الطيران.

الريطامع الجياة

لقد طوّرت ألمانيا جهاز رادار عام 1936 يستطيع رصد الطائرات ضمن دائرة نصف قطرها 80 mi .

💆 تحقق من فهمك

5) قوارب: يرصُد رادار بحري حركة قاربين، إذا كانت إحداثيات موقعي القاربين (65 , 6), (0 , 150) عيث r بالأميال.

pزارة التعليم Ministry of Education 2021 - 1443

- **5B**) ما المسافة بين القاربين؟
- **5A)** فمثّل هذا الموقف في المستوى القطبي.

تدرب وحل المسائل

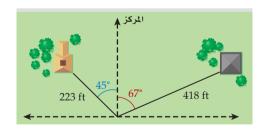
مثِّل كل نقطة مما يأتي في المستوى القطبي. (المثالان 2, 1)

- $T(-2.5, 330^{\circ})$ (2 $R(1, 120^{\circ})$ (1
 - $A(3, \frac{\pi}{6})$ (4 $F(-2, \frac{2\pi}{3})$ (3
- $D\left(-1, -\frac{5\pi}{3}\right)$ (6 $B(5, -60^{\circ})$ (5
 - $C(-4,\pi)$ (8 $G(3.5,-\frac{11\pi}{6})$ (7
- $W(-1.5, 150^{\circ})$ (10 $M(0.5, 270^{\circ})$ (9
- (11) رماية: يتكون هدف في منافسة للرماية من 10 دوائر متحدة المركز. ويتدرج عدد النقاط المكتسبة من 1 إلى 10 من الحلقة الدائرية الخارجية إلى الدائرة الداخلية على الترتيب. افترض أن راميًا يستعمل هدفًا نصف قطره 120 cm، وأنه قد أطلق ثلاثة أسهم، فأصابت الهدف عند النقاط (°30, 240), (°82, 315), (82, 315). إذا كان لجميع الحلقات الدائرية السمك نفسه، ويساوي طول نصف قطر الدائرة الداخلية. (المثالان 1,2)

- a) فمثِّل النقاط التي أصابها الرَّامي في المستوى القطبي.
 - b) ما مجموع النقاط التي حصل عليها الرَّامي؟

إذا كانت $360^\circ \ge \theta \ge 360^\circ$ ، فأوجد ثلاثة أزواج مختلفة كل منها يمثّل إحداثيين قطبيين للنقطة في كلِّ مما يأتي: (مثال 3)

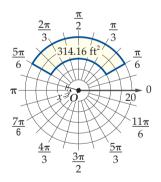
- $(-2,300^{\circ})$ (13 $(1,150^{\circ})$ (12
- $\left(-3, \frac{2\pi}{3}\right)$ (15 $\left(4, -\frac{7\pi}{6}\right)$ (14)
- $\left(-5, -\frac{4\pi}{3}\right)$ (17 $\left(5, \frac{11\pi}{6}\right)$ (16
- $(-1, -240^{\circ})$ (19 $(2, -30^{\circ})$ (18


مَثِّل كل معادلة من المعادلات القطبية الآتية بيانيًّا: (مثال 4)

- $\theta = 225^{\circ}$ (21 r = 1.5 (20
- r = -3.5 (23 $\theta = -\frac{7\pi}{6}$ (22

- مركز الهدف المحدد 20 m
 - 24) القفر بالمظلات: في مسابقة مر لتحديد دقة موقع الهبوط، يحاول مظلي الوصول إلى «مركز الهدف المحدد»؛ ومركز الهدف عبارة عن دائرة حمراء طول قطرها 2m. كما يشمل الهدف دائرتين طولا نصفي قطريهما 10m و 20m. (مثال 4)
 - a) اكتب 3 معادلات قطبية تمثّل حدود المناطق الثلاث للهدف.
 - b) مَثِّل هذه المعادلات في المستوى القطبي.

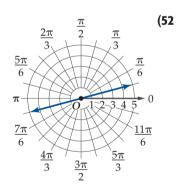
أوجد المسافة بين كل زوج من النقاط فيما يأتي. (مثال 5)

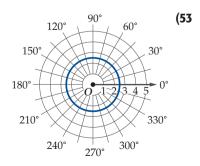

- $(3, \frac{\pi}{2}), (8, \frac{4\pi}{3})$ (26 (2, 30°), (5, 120°) (25
- $\left(7, -\frac{\pi}{3}\right), \left(1, \frac{2\pi}{3}\right)$ (28 (6, 45°), (-3, 300°) (27)
- $(4, -315^{\circ}), (1, 60^{\circ})$ (30 $\left(-5, \frac{7\pi}{6}\right), \left(4, \frac{\pi}{6}\right)$ (29
- $\left(-3, \frac{11\pi}{6}\right), \left(-2, \frac{5\pi}{6}\right)$ (32 $\left(-2, -30^{\circ}\right), \left(8, 210^{\circ}\right)$ (31
- $(7, -90^{\circ}), (-4, -330^{\circ})$ (34 $\left(1, -\frac{\pi}{4}\right), \left(-5, \frac{7\pi}{6}\right)$ (33
 - $(-5, 135^{\circ}), (-1, 240^{\circ})$ (36 $\left(8, -\frac{2\pi}{3}\right), \left(4, -\frac{3\pi}{4}\right)$ (35)
 - 77) مسَاحون: أراد مسَّاح تحديد حدود قطعة أرض، فحدّد أثرًا يبعُد 223 ft بزاوية °415 إلى يسار المركز، وأثرًا آخر على بُعد 418 ft بزاوية °67 إلى يمين المركز، كما في الشكل أدناه، أوجد المسافة بين الأثرين. (مثال 5)

- راقبہ: تراقب آلة تصویر مثبتة منطقة جبلیة تمثّل جزءًا من دائرة، وتُحدَّدُ بالمتباینتین $0.0 \le r \le 0.0$ ، حیث وتُحدَّدُ بالمتباینتین $0.0 \le r \le 0.0$ ، حیث $0.00 \le r \le 0.0$
 - a مثّل في المستوى القطبي المنطقة التي يمكن لآلة التصوير مراقبتها.
- أو جد مساحة المنطقة (مساحة القطاع الدائري تساوي: قياس زاوية القطاع بالدرجات × مساحة الدائرة). 1400 التصليم 360° مساحة الدائرة (مساحة الدائرة). 2010 التصليم 2021 1443

إذا كانت °180 $heta \leq 0$ ، فأوجد زوجًا آخر من الإحداثيات القطبيّة لكل نقطة مما يأتي:

- (5,960°) **(39**
- $\left(-2.5, \frac{15\pi}{6}\right)$ (40
 - $\left(4, \frac{33\pi}{12}\right)$ (41)
- (1.25,-920°) **(42**
- $\left(-1, -\frac{21\pi}{8}\right)$ (43)
- $(-6, -1460^{\circ})$ (44
- رومف المسرح (45 مسرح: يلقي شاعر قصيدة في مسرح. ويمكنُ وصف المسرح بمستوى قطبي، بحيث يقف الشاعر في القطب باتجاه المحور القطبي. افترض أن الجمهور يجلس في المنطقة المحددة بالمتباينتين $\frac{\pi}{2} \leq \theta \leq \frac{\pi}{4}$, $\frac{\pi}{2} \leq \theta \leq \frac{\pi}{4}$, حيث π بالأقدام.
 - a) مثِّل المنطقة التي يجلس بها الجمهور في المستوى القطبي.
 - إذا كان كل شخص بحاجة إلى $5\,\mathrm{ft}^2$ ، فكم مقعداً يتسع له المسرح؟
- أمن: يضيء مصباح مراقبة مثبت على سطح أحد المنازل منطقة على شك جزء من قطاع دائري محدَّد بالمتباينتين $\frac{\pi}{6} \leq \theta \leq \frac{5\pi}{6}$ مكل جزء من قطاع دائري محدَّد بالمتباينتين $x \leq r \leq 20$ محيث x بالأقدام. إذا كانت مساحة المنطقة $x \leq r \leq 20$ كما هو مبين في الشكل أدناه، فأوجد قيمة $x \leq r \leq 20$

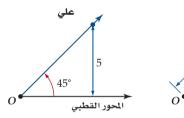



أوجد الإحداثي المجهول الذي يحقِّق الشروط المعطاة في كل مما يأتي:

- $P_1 = (3, 35^\circ), P_2 = (r, 75^\circ), P_1P_2 = 4.174$ (47
- $P_1 = (5, 125^\circ)$, $P_2 = (2, \theta)$, $P_1 P_2 = 4$, $0 \le \theta \le 180^\circ$ (48)
 - $P_1 = (3, \theta), P_2 = \left(4, \frac{7\pi}{9}\right), P_1 P_2 = 5, 0 \le \theta \le \pi$ (49)
 - $P_1 = (r, 120^\circ), P_2 = (4, 160^\circ), P_1P_2 = 3.297$ (50

- 51) **لا تمثيلات متعددة:** في هذه المسألة، سوف تستقصي العلاقة بين الإحداثيات القطبية والإحداثيات الديكارتية.
- بيانيًا: عيِّن $A\left(2,\frac{\pi}{3}\right)$ في المستوى القطبي، وارسم نظام الإحداثيات الديكارتية فوق المستوى القطبي بحيث تنطبق نقطة الأصل على القطب، والجزء الموجب من المحور x على المحور القطبي. وبالتالي سينطبق المحور y على المستقيم $\frac{\pi}{2}$ =. ارسم مثلثًا قائمًا بوصل x مع نقطة الأصل، وارسم منها عمودًا على المحور x.
- **b) عدديًا:** احسب طولي ضلعي الزاوية القائمة باستعمال طول الوتر والمتطابقات المثلثية.
- وارسم عينًا: عينًا $B\left(4,\frac{5\pi}{6}\right)$ على المستوى القطبي نفسه، وارسم مثلثًا قائمًا بوصل B مع نقطة الأصل، وارسم منها عمودًا على المحور x، واحسب طولى ضلعى الزاوية القائمة.
 - d) تحليليًا: كيف ترتبط أطوال أضلاع المثلث بالإحداثيات الديكارتية لكل نقطة؟
 - (r, θ) المرح العلاقة بين الإحداثيات القطبية (r, θ) والإحداثيات الديكارتية (r, r).

اكتب المعادلة لكل تمثيل قطبي مما يأتي:





مزارة التعطيم Ministry of Education 2021 - 1443

مسائل مهارات التفكير العليا

- تبرير: وضّح لماذا لا يكون ترتيب النقاط في معادلة المسافة القطبية مهمًّا، أو بعبارة أخرى، لماذا يمكنك اختيار أي نقطة لتكون P_1 ، والنقطة الأخرى لتكون P_2 ?
 - 55) تحدِّ: أوجد زوجًا مُرَتَّبًا من الإحداثيات القطبية ؛ لتمثيل النقطة التي إحداثياتها الديكارتية (4-3,-4).
- $P_1(r_1,\,\theta_1)$, $P_2(r_2,\,\theta_2)$ برهان: أثبت أن المسافة بين النقطتين (56 . $P_1\,P_2=\sqrt{{r_1}^2+{r_2}^2-2r_1r_2\cos{(\theta_2-\theta_1)}}$ هي (إرشاد: استعمل قانون جيوب التمام).
 - 57) تبرير: وضّح ماذا يحدث لمعادلة المسافة المعطاة بالصيغة القطبية عندما يكون $\frac{\pi}{2}= heta_2- heta_1=\frac{\pi}{2}$. فسّر هذا التغيّر.
- 58) اكتشف الخطأ: قام كل من سعيد وعلي بتمثيل النقطة (°5, 45) في المستوى القطبي كما هو مبيّن أدناه. أيهما كانت إجابته صحيحة؟ بُرِّر إجابتك.

مراجعة تراكمية

أوجد حاصل الضرب الداخلي للمتجهين u, v في كل مما يأتي، ثم حدِّد ما إذا كان u, v متعامدين أولًّا: (المدرس 1-5)

$$\mathbf{u}=\langle 4,10,1 \rangle, \mathbf{v}=\langle -5,1,7 \rangle$$
 (60

$$\mathbf{u} = \langle -5, 4, 2 \rangle, \mathbf{v} = \langle -4, -9, 8 \rangle$$
 (61

$$\mathbf{u}=\langle -8, -3, 12 \rangle, \mathbf{v}=\langle 4, -6, 0 \rangle$$
 (62

إذا كان $a=\langle -4,3,-2 \rangle$, $b=\langle 2,5,1 \rangle$, $c=\langle 3,-6,5 \rangle$ فأوجد كلًّا مما يأتي: (الدرس 1-4)

$$3a + 2b + 8c$$
 (63)

$$-2a + 4b - 5c$$
 (64)

أوجد الزاوية θ بين المتجهين u , v لكل مما يأتي: (المدرس 1-5)

$$u = \langle 4, -3, 5 \rangle, v = \langle 2, 6, -8 \rangle$$
 (65

$$u = 2i - 4j + 7k$$
, $v = 5i + 6j - 11k$ (66)

$$\mathbf{u} = \langle -1, 1, 5 \rangle, \mathbf{v} = \langle 7, -6, 9 \rangle$$
 (67

أوجد إحداثيات مركز وطول نصف قطر كل من الدوائر الآتية: (مهارة سابقة)

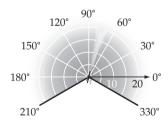
$$x^2 + (y-1)^2 = 9$$
 (68)

$$(x+1)^2 + y^2 = 16$$
 (69)

$$x^2 + y^2 = 1$$
 (70

تدريب على اختبار

، R(-5,3) أيُّ المتجهات الآتية يمثِّل \overline{RS} ، حيث إن نقطة البداية (70 -5 , 8) ونقطة النهاية (70 -5 , 9)


$$\langle -7, 10 \rangle$$
 C

$$\langle 7, -10 \rangle$$
 A

$$\langle -3, -10 \rangle$$
 D

$$\langle -3, 10 \rangle$$
 B

يستطيع رشاش ماء رشّ منطقة على شكل قطاع دائري يمكن $-30^\circ \leq \theta \leq 210^\circ$, $0 \leq r \leq 20$ تحديدها بالمتباينتين $0 \leq r \leq 20$ جيث r بالأقدام. ما المساحة التقريبية لهذه المنطقة r

- 852 ft² **C**
- 821 ft² A
- 866 ft² **D**
- 838 ft² **B**

الصورة القطبية والصورة الديكارتية للمعادلات

Polar and Rectangular Forms of Equations

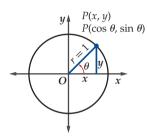
رفيما رسناقء

درستُ تمثيل النقاط وبعض المعادلات القطبية. (الدرس 1-2)

المادا ي

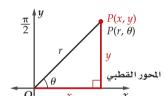
روا الدرن و

- أحوّلُ بين الإحداثيات القطبية والديكارتية.
 - أحوّلُ المعادلات من الصورة القطبية إلى الصورة الديكارتية والعكس.


يبعث مِجَس مُثبت إلى رجل آلى أمواجًا فوق صوتية على شكل دوائر كاملة، وعندما تصطدم الأمواج بجسم، فإنَّ المُّجس يستقبل إشارة، ويقوم بحساب بُعد الجسم عن مقدمة الرجل الآلي بدلالة المسافة المتجهة au ، والزاوية المتجهة au . ويوصل المجس هذه الإحداثيات القطبية إلى الرَّجل الآلي الّذي يحولها إلى الإحداثيات الديكارتية؛ ليتمكن من تعيينها على خريطة داخلية.

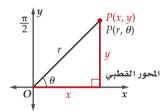
P(x, y) الإحداثيات القطبية والديكارتية يمكن كتابة إحداثيات النقطة الواقعة على دائرة الوحدة ، والمقابلة لزاوية heta على الصورة $P(\cos heta,\sin heta)$ ؛ لأن

$$\cos \theta = \frac{x}{r} = \frac{x}{1} = x$$
 , $\sin \theta = \frac{y}{r} = \frac{y}{1} = y$

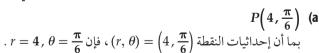

فإذا كان طول نصف قطر دائرة عددًا حقيقيًّا r بدلًا من 1، فإنه يمكننا كتابة النقطة بدلالة r , θ على النحو الآتى: P(x,y)

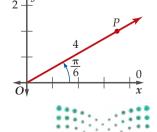
$$\cos heta = rac{x}{r}$$
 , $\sin heta = rac{y}{r}$ $r \cos heta = x$, $r \sin heta = y$ روم روم المرب في $r \sin heta = y$

وإذا نظرنا للمستوى الديكارتي على أنه مستوى قطبي، بحيث ينطبق المحور القطبي على الجزء الموجب من المحور x ، والقطب على نقطة الأصل، فإنه يصبح لدينا وسيلة لتحويل الإحداثيّات القطبية إلى الإحداثيّات


مفهوم أساسي تحويل الإحداثيات القطبية إلى الإحداثيات الديكارتية

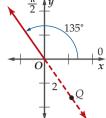
إذا كان للنقطة P الإحداثيات القطبية (r,θ) ، فإن الإحداثيات الديكارتية (x, y) للنقطة P هي:


 $x = r \cos \theta$, $y = r \sin \theta$


 $(x, y) = (r \cos \theta, r \sin \theta)$ أي أن

مثال 1 تحويل الإحداثيات القطبية إلى الإحداثيات الديكارتية

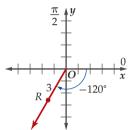
حوّل الإحداثيات القطبية إلى إحداثيات ديكارتية، لكلِّ نقطة مما يأتى:


 $y = r \sin \theta$ صيغ التحويل $x = r \cos \theta$ $r=4, \theta=\frac{\pi}{6} \qquad \qquad = 4\cos\frac{\pi}{6}$ $=4\sin\frac{\pi}{6}$ $=4\left(\frac{\sqrt{3}}{2}\right)$ $=4\left(\frac{1}{2}\right)$

 $= 2\sqrt{3}$

أي أن الإحداثيات الديكارتية للنقطة P هي $(2\sqrt{3},2)$ أو (3.46,2) تقريبًا كما في الشكل أعلاه، م 2021 - 1443

$$Q(-2, 135^{\circ})$$
 (b



$$= -2 \sin 135^\circ$$
 $r = -2$, $\theta = 135^\circ$ $= -2 \cos 135^\circ$ $= -2\left(\frac{\sqrt{2}}{2}\right) = -\sqrt{2}$ بسُط $= -2\left(-\frac{\sqrt{2}}{2}\right) = \sqrt{2}$

(1.41 , -1.41) أو ($\sqrt{2}$, $-\sqrt{2})$ هي Q للنقطة للنقطة الديكارتية للنقطة و الم تقريبًا كما في الشكل أعلاه.

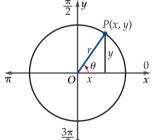
$V(3, -120^{\circ})$ (c

$$r=3$$
 , $\theta=-120^\circ$ بما أن إحداثيات النقطة $(r,\theta)=(3\,,\,-120^\circ)$ ، فإن $y=r\sin\theta$ صيغ التحويل $x=r\cos\theta$ = $3\sin{(-120^\circ)}$ $=3\cos{(\cos{-120^\circ)}}$

$$= 3 \sin (-120^{\circ}) \qquad r = 3, \theta = -120^{\circ} \qquad = 3 (\cos -120^{\circ})$$

$$= 3 \left(-\frac{\sqrt{3}}{2} \right) = -\frac{3\sqrt{3}}{2} \qquad \qquad = 3 \left(-\frac{1}{2} \right) = -\frac{3}{2}$$

أي أن الإحداثيات الديكارتية للنقطة V هي $\left(-\frac{3}{2},-\frac{3\sqrt{3}}{2}\right)$ أو $\left(-1.5,-2.6\right)$ تقريبًا كما في الشكل أعلاه.

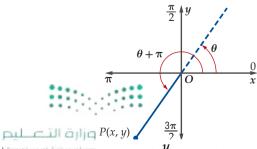

🚺 تحقق من فهمك

حوِّل الإحداثيات القطبية إلى إحداثيات ديكارتية، لكل نقطة مما يأتي:

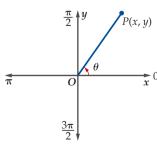
$$T(-3,45^{\circ})$$
 (1C

 $S(5, \frac{\pi}{3})$ (1B $R(-6, -120^{\circ})$ (1A

ولكتابة زوج الإحداثيات الديكارتية بالصيغة القطبية، فإنك بحاجة إلى إيجاد المسافة المتجهة r من النقطة (x,y) إلى نقطة الأصل أو القطب، و قياس الزاوية المتجهة التي يصنعها r مع الجزء الموجب من المحور x أو المحور القطبيّ. استعمل نظرية فيثاغورس؛ لإيجاد المسافة r من النقطة (x, y) إلى نقطة الأصل.


نظرية فيثاغورس
$$r^2 = x^2 + y^2$$
 خُذ الجدر التربيعي الموجب للطرفين $r = \sqrt{x^2 + y^2}$

ترتبط الزاوية heta بكل من x , y من خلال دالة الظل، ولإيجاد الزاوية heta:


تعریف الظل
$$heta=rac{y}{x}$$
 tan $heta= frac{1}{x}$

دالة معكوس الظلل
$$heta={
m Tan}^{-1}rac{y}{x}$$

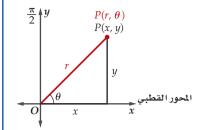
تذكّر أن الدالة العكسيّة للظل معرّفة فقط على الفترة $(\frac{\pi}{2},\frac{\pi}{2})$ أو $(90^\circ,90^\circ)$ في نظام الإحداثيات الديكارتية. x < 0 وتُعطى قيم θ الواقعة في الربع الأول أو الرابع، أي عندما تكون x > 0 كما في الشكل x < 0 . وإذا كانت فإن الزاوية تقع في الربع الثاني أو الثالث، لذا عليك إضافة π أو °180 (طول الدورة للدالة $y = \tan x$) إلى قياس الزاوية المعطاة بالدالة العكسيّة للظل كما في الشكل 2.2.2 .

x < 0 عندما $\theta = \text{Tan}^{-1} \frac{y}{x} + 180^{\circ}$ أو $\theta = \text{Tan}^{-1} \frac{y}{x} + \pi$ الشكا، 2.2.2

x > 0 عندما $\theta = \operatorname{Tan}^{-1} \frac{y}{x}$

إرشادات للدراسة

تحويل الإحداثيات


إن العملية المتبعة لتحويل

الإحداثيات الديكارتية إلى الإحداثيات القطبية هي

ذاتُها العملية المتبعة في إيجاد طول المتجه واتجاهه.

تحويل الإحداثيات الديكارتية إلى الإحداثيات القطبية

مفهوم أساسي

إذا كان للنقطة P الإحداثيات الديكارتية (x,y) ، فإن الإحداثيات القطبية للنقطة P هي (r,θ) حيث:

$$x>0$$
 عندما $\theta={
m Tan}^{-1}\frac{y}{x}$ ، $r=\sqrt{x^2+y^2}$ بعندما $x<0$ وعندما $\theta={
m Tan}^{-1}\frac{y}{x}+\pi$

. θ = Tan⁻¹
$$\frac{y}{x}$$
 + 180°

$$y>0$$
 وعندما $x=0$ فإن: $x=y$ ، $y=0$ فإن: $x=0$ وعندما أو $x=y$ فإن: كانت $y<0$ إذا كانت $y=y$ ، $y=0$

تذكّر أن هناك عددًا لانهائيًّا من أزواج الإحداثيات القطبية للنقطة، والتحويل من الإحداثيات الديكارتية إلى الإحداثيات القطبية يعطى أحدها.

مثال 2 تحويل الإحداثيات الديكارتية إلى الإحداثيات القطبيّة

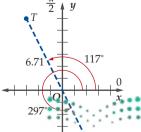
أوجد زوجين مختلفين كل منهما يمثّل إحداثيين قطبيين لكل نقطة معطاة بالإحداثيّات الديكارتيّة في كلِّ مما يأتي:

 $S(1, -\sqrt{3})$ (a

.
$$x=1$$
 , $y=-\sqrt{3}$ ، فإن (x,y) = $(1$, $-\sqrt{3}$) بما أن إحداثيات النقطة

.
$$\theta$$
 ولأن $x>0$ ؛ لذا استعمل الصيغة ولأن $x>0$ ؛ لإيجاد الزاوية

$$heta = an^{-1} rac{y}{x}$$
 صيغ التحويل $r = \sqrt{x^2 + y^2}$ $= an^{-1} rac{-\sqrt{3}}{1}$ $x = 1$, $y = -\sqrt{3}$ $= \sqrt{1^2 + (-\sqrt{3})^2}$ $= -rac{\pi}{3}$ $= \sqrt{4} = 2$


ويمكن إيجاد زوج آخر باستعمال قيمة موجبة لـ
$$heta$$
 ، وذلك بإضافة 2π .

ويمس إياد روج باعر بالمستعمل بيمه موجه ك الأورى وعلى بوطع باعر وعلى باعر المجاور. في كون
$$\left(2, -\frac{\pi}{3} + 2\pi\right)$$
 كما في الشكل المجاور. $T(-3,6)$ (b

$$x = -3, y = 6$$
 فإن $(x, y) = (-3, 6)$ نا النقطة يما أن إحداثيات النقطة

$$x = -3$$
 , $y = 6$ ، فإن $(x, y) = (-3, 6)$ بما ان إحداثيات النقطة و $\theta = -3$ ، فإن $\theta = -3$ ، لإيجاد الزاوية $\theta = -3$

$$heta = an^{-1} rac{y}{x} + 180^\circ$$
 صيغ التحويل $r = \sqrt{x^2 + y^2}$ $= an^{-1} \left(-\frac{6}{3} \right) + 180^\circ$ $y = 6, x = -3$ $= \sqrt{(-3)^2 + 6^2}$ $= an^{-1} (-2) + 180^\circ \approx 117^\circ$ بسُط $= \sqrt{45} \approx 6.71$

أي أن (°117 , 6.71) تقريبًا هو زوج من الإحداثيات القطبية للنقطة T ، ويمكن إيجاد زوج آخر باستعمال قيمة سالبة لـ r، فنحصل على

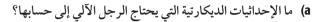
(-6.71, 117° + 180°) أو (-6.71, 297°)، كما في الشكل المجاور.

💆 تحقق من فهمك

أوجد زوجين مختلفين كل منهما يمثّل إحداثيين قطبيين لكل نقطة معطاة بالإحداثيّات الديكارتيّة في كلِّ مما يأتي:

$$W(-9, -4)$$
 (2B)

$$V(8,10)$$
 (2A


2021 - 1443

في بعض ظواهر الحياة الطبيعية ، قد يكون من المفيد أن تحوّل بين الإحداثيات القطبية والإحداثيات الديكارتية.

🥡 مثال 3 من واقع الحياة

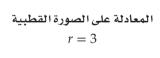
التحويل بين الإحداثيات

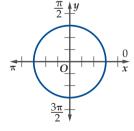
رجل آلي: بالرجوع إلى فقرة «لماذا؟»، افترض أن الرَّجل الآلي متجه إلى الشرق، وأن المِجَسَّ قد رَصَدَ جسمًا عند النقطة (5, 295).

$$y = r \sin \theta$$
 صيغ التحويل $x = r \cos \theta$
 $= 5 \sin 295^{\circ}$ $r = 5$, $\theta = 295^{\circ}$ $= 5 \cos 295^{\circ}$
 ≈ -4.53 هشط ≈ 2.11

أي أن الإحداثيات الديكارتية لموقع الجسم هي (4.53 - , 2.11) تقريبًا.

b) إذا كان موقع جسم رُصد سابقًا عند النقطة التي إحداثياتها (3,7)، فما المسافة وقياس الزاوية بين الجسم والرجل الآلى؟


الإحداثيات القطبية لموقع الجسم هي (°7.62, 66.8) تقريبًا؛ أي أن المسافة بين الجسم والرجل الآلي 7.62، وقياس الزاوية بينهما °66.8


🗹 تحقق من فهمك

- **3) صيد الأسماك:** يُستعمل جهاز رصد؛ لتحديد موقع وجود الأسماك تحت الماء. افترض أن قاربًا يتجه إلى الشرق، وأن جهاز الرصد قد رصد سربًا من الأسماك عند النقطة (°125, 6).
 - A) ما الإحداثيات الديكارتية لموقع سرب الأسماك؟
 - (B) إذا كان موقع سرب الأسماك قد رُصد سابقًا عند النقطة التي إحداثياتها الديكارتية (2,6)، فما الإحداثيات القطبية لموقع السرب؟

المعادلات القطبية والديكارتية قد تحتاج في دراستك المستقبلية إلى تحويل المعادلة من الصورة الديكارتية إلى الصورة القطبية والعكس؛ وذلك لتسهيل بعض الحسابات. فبعض المعادلات الديكارتية المعقَّدة صورتها القطبية أسهل كثيرًا. لاحظ معادلة الدائرة على الصورة الديكارتية والقطبية كما في الشكل أدناه.

المعادلة على المصورة الديكارتية $x^2 + y^2 = 9$

وبشكلٍ مماثل فإن بعض المعادلات القطبية المعقَّدة صورتها الديكارتية أسهل كثيرًا، 2x-3y=6 فالمعادلة القطبية $\frac{6}{2\cos\theta-3\sin\theta}$ مصورتها الديكارتية هي

2021 - 1443

الريطامع الحياة

الفضاء الخارجي.

صممت وكالة ناسا رجلًا آليًّا وزنه

3400 باوند، وطوله 12 ft، وطول ذراعه 11 ft؛ لأداء بعض المهام في $r\cos\theta$ نعملية تحويل المعادلة من الصورة الديكارتية إلى الصورة القطبية عملية مباشرة؛ إذ نعوض عن $r\cos\theta$ ، وعن $r\sin\theta$ ، $r\sin\theta$ ، ثم نبسِّط المعادلة الناتجة باستعمال الطرق الجبرية والمتطابقات المثلثية.

مثال 4 تحويل المعادلات الديكارتية إلى المعادلات القطبية

اكتب كلُّ معادلة مما يأتي على الصورة القطبية:

$$(x-4)^2 + y^2 = 16$$
 (a

لإيجاد الصورة القطبيّة للمعادلة، عوض عن x بـ σ cos وعن y بـ σ r sin θ . ثم بَسِّط المعادلة.

المعادلة الأصلية (
$$(x-4)^2 + y^2 = 16$$

$$x = r \cos \theta$$
, $y = r \sin \theta$ $(r \cos \theta - 4)^2 + (r \sin \theta)^2 = 16$

اضرب
$$r^2 \cos^2 \theta - 8r \cos \theta + 16 + r^2 \sin^2 \theta = 16$$

اطرح 16 من المطرفين
$$r^2 \cos^2 \theta - 8r \cos \theta + r^2 \sin^2 \theta = 0$$

ضع الحدود المربعة في طرف واحد
$$r^2\cos^2\theta + r^2\sin^2\theta = 8r\cos\theta$$

$$r^2 (\cos^2 \theta + \sin^2 \theta) = 8r \cos \theta$$

متطابقة فيثاغورس
$$r^2$$
 (1) = $8r\cos\theta$

$$r \neq 0$$
 اقسم الطرفين على $r = 8 \cos heta$

$$y = x^2$$
 (**b**

المعادلة الأصلية
$$y=x^2$$

$$x = r \cos \theta, y = r \sin \theta$$
 $r \sin \theta = (r \cos \theta)^2$

$$r \sin \theta = r^2 \cos^2 \theta$$

$$r\cos^2\theta$$
 اقسم الطرفين على $\frac{\sin\theta}{\cos^2\theta} = r$

$$\frac{\sin \theta}{\cos^2 \theta} = \frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\cos \theta} \qquad \frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\cos \theta} = r$$

المتطابقات النسبية ومتطابقات المقلوب
$$an heta \sec heta = r$$

إرشادات للدراسة

المتطابقات المثلثية

من المفيد أن تراجع المتطابقات المثلثية التي تعلمتها سابقًا؛ لمساعدتك على تبسيط الصورة القطبية للمعادلات الديكارتيّة.

🚺 تحقق من فهمك

اكتب كلُّ معادلة مما يأتي على الصورة القطبية:

$$x^2 - y^2 = 1$$
 (4B $x^2 + (y - 3)^2 = 9$ (4A

عملية تحويل المعادلة القطبية إلى معادلة ديكارتية ليست مباشرة مثل عملية التحويل من المعادلة الديكارتية إلى المعادلة القطبية، ففي التحويل الثاني تلزمنا جميع العلاقات الآتية:

$$r^2 = x^2 + y^2, \tan \theta = \frac{y}{x}, x = r \cos \theta, y = r \sin \theta$$

مزارة التعليم Ministry of Education 2021 - 1443

تحويل المعادلات القطبية إلى المعادلات الديكارتية

مـثال 5

اكتب كلّ معادلة قطبيّة مما يأتي على الصورة الديكارتية.

$$\theta = \frac{\pi}{6}$$
 (a

إرشادات للدراسة

 $\left(4,\frac{\pi}{6}\right)$ و $\left(2,\frac{\pi}{6}\right)$ النقطتان على المستقيم $\theta=\frac{\pi}{6}$

والإحداثيات الديكارتية لهما $(\sqrt{3}, 1)$ و $(\sqrt{3}, 1)$

فتكون معادلة المستقيم المار بهاتين النقطتين هي:

طريقة بديلة

 $y = \frac{\sqrt{3}}{3}x$

المعادلة الأصلية
$$heta=rac{\pi}{6}$$

الطرفين
$$an heta = rac{\sqrt{3}}{3}$$

$$\tan \theta = \frac{y}{x} \qquad \qquad \frac{y}{x} = \frac{\sqrt{3}}{3}$$

$$x$$
اضرب الطرفين في $y = \frac{\sqrt{3}}{3}x$

$$r = 7$$
 (b

المعادلة الأصلية
$$r=7$$

ربّع الطرفين
$$r^2=49$$

$$r^2 = x^2 + y^2$$
 $x^2 + y^2 = 49$

$$r = -5 \sin \theta$$
 (c

المعادلة الأصلية
$$r=-5\sin\theta$$

$$r$$
اضرب الطرفين في $r^2 = -5r \sin \theta$

$$r^2 = x^2 + y^2$$
, $y = r \sin \theta$ $x^2 + y^2 = -5y$

أضف
$$5y$$
 إلى الطرفين $x^2 + y^2 + 5y = 0$

🗹 تحقق من فهمك

اكتب كلّ معادلة قطبيّة مما يأتي على الصورة الديكارتية:

$$\theta = \frac{\pi}{3}$$
 (5B)

$$r = -3$$
 (5A)

64

تدرب وحل المسائل

حوّل الإحداثيات القطبية إلى إحداثيات ديكارتية لكلِّ نقطة مما يأتي: (مثال 1)

$$\left(\frac{1}{4}, \frac{\pi}{2}\right)$$
 (2 $\left(2, \frac{\pi}{4}\right)$ (1

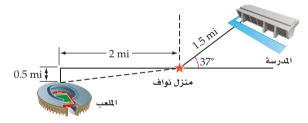
$$(-13, -70^{\circ})$$
 (6 $\left(-2, \frac{4\pi}{3}\right)$ (5

$$(-2,270^{\circ})$$
 (8 $\left(\frac{1}{2},\frac{3\pi}{4}\right)$ (7

$$\left(-1, -\frac{\pi}{6}\right)$$
 (10 (4,210°) (9

أوجد زوجين مختلفين كل منهما يمثِّل إحداثيين قطبيين لكل نقطة معطاة بالإحداثيّات الديكارتيّة في كلِّ مما يأتي: (مثال 2)

$$(-13,4)$$
 (12 $(7,10)$ (11


$$(4, -12)$$
 (14 $(-6, -12)$ (13

$$(0, -173)$$
 (16 $(2, -3)$ (15

$$(3, -4)$$
 (20 $(52, -31)$ (19

$$(2,\sqrt{2})$$
 (22 $(1,-1)$ (21

23) مسافات: إذا كانت مدرسة نواف تبعُد 1.5 mi عن منزله، وتصنع زاوية مقدارها °53 شمال الشرق كما في الشكل أدناه، فأجب عن الفرعين a, b (مثال 3)

- إذا سلك نواف طريقًا للشرق ثم للشمال؛ كي يصل إلى المدرسة، فكم ميلًا يتحرك في كل اتجاه؟
- إذا كان الملعب على بُعد 2 mi غربًا، و 0.5 mi جنوبًا، ومنزل نواف يمثّل القطب، فما إحداثيات موقع الملعب على الصورة القطبية؟

اكتب كلَّ معادلة مما يأتي على الصورة القطبية: (مثال 4)

$$(x+5)^2 + y^2 = 25$$
 (25 $x = -2$ (24)

$$x = 5$$
 (27 $y = -3$ (26)

$$x^{2} + (y+3)^{2} = 9$$
 (29 $(x-2)^{2} + y^{2} = 4$ (28

$$x^2 + (y+1)^2 = 1$$
 (31 $y = \sqrt{3}x$ (30

اكتب كلّ معادلة قطبيّة مما يأتي على الصورة الديكارتية: (مثال 5)

$$\theta = -\frac{\pi}{3}$$
 (33 $r = 3 \sin \theta$ (32

$$r = 4 \cos \theta$$
 (35 $r = 10$ (34

$$r = 8 \csc \theta$$
 (37 $\tan \theta = 4$ (36)

$$\cot \theta = -7$$
 (39 $r = -4$ (38)

$$r = \sec \theta$$
 (41 $\theta = \frac{3\pi}{4}$ (40

 $r = 12.6 \sin \theta$ **زلاز** المعادلة θ أمواج الزلازل بالمعادلة على الصورة حيث r مقاسه بالأميال. اكتب معادلة أمواج الزلازل على الصورة الديكارتية. (مثال 5)

اكتب كلّ معادلة قطبيّة مما يأتي على الصورة الديكارتية:

$$r = \frac{1}{\cos \theta + \sin \theta}$$
 (43)

$$r = 10 \csc \left(\theta + \frac{7\pi}{4}\right)$$
 (44)

$$r = 3 \csc \left(\theta - \frac{\pi}{2}\right)$$
 (45)

$$r = -2\sec\left(\theta - \frac{11\pi}{6}\right)$$
 (46)

$$r = 4 \sec \left(\theta - \frac{4\pi}{3}\right)$$
 (47)

$$r = \frac{5\cos\theta + 5\sin\theta}{\cos^2\theta - \sin^2\theta}$$
 (48)

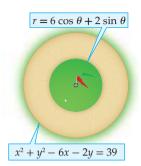
$$r = 2\sin\left(\theta + \frac{\pi}{3}\right)$$
 (49)

$$r = 4\cos\left(\theta + \frac{\pi}{2}\right)$$
 (50

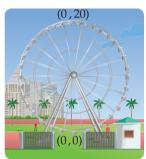
اكتب كلُّ معادلة مما يأتي على الصورة القطبية:

$$6x - 3y = 4$$
 (51)

$$2x + 5y = 12$$
 (52)


$$(x-6)^2 + (y-8)^2 = 100$$
 (53)

$$(x+3)^2 + (y-2)^2 = 13$$
 (54)



Ministry of Education 2021 - 1443

55) جولف: في أحد ملاعب الجولف، يحيط بثقب الهدف منطقة خضراء محاطة بمنطقة رملية، كما في الشكل أدناه. أوجد مساحة المنطقة الرملية على فرض أن الثقب يمثِّل القطب لكلتا المعادلتين، وأن المسافات تُقاس بوحدة الياردة.

- **56) عجلة دوَّارة:** إذا كانت إحداثيات أدنى نقطة في عجلة دوَّارة (0,0)، وأعلى نقطة فيها (0,20).
 - a فاكتب معادلة العجلة الدوّارة الموضحة بالشكل المجاور على الصورة الديكارتية.
 - a اكتب المعادلة في الفرع (b بالصيغة القطبية.

- 57) 57 تمثيلات متعددة: في هذه المسألة سوف تكتشف العلاقة بين الأعداد المركبة والإحداثيات القطبية.
 - المستوى a + bi في المستوى (a) بيانيًا: يمكن تمثيل العدد المركب الديكارتي بالنقطة (a, b). مَثِّل العدد المركب 6+8i في المستوى الديكارتي.
 - b) عدديًا: أوجد الإحداثيات القطبية للعدد المركب باستعمال الإحداثيات الديكارتية التي أوجدتها في الفرع a .
- c بيانيًا: عزِّز إجابتك في الفرع b بتمثيل الإحداثيات القطبية في المستوى القطبي.
 - لمستوى ألم بيانيًّا العدد المركب 3i + 3i + 3i في المستوى (d
 - e) بيانيًا: أوجد الإحداثيات القطبية للعدد المركب باستعمال الإحداثيات الديكارتية التي أوجدتها في الفرع d. ومَثَّل الإحداثيات القطبية في المستوى القطبي.
 - f) تحليليًا: أوجد العبارات الجبرية التي تبيّن كيفية كتابة العدد المركب a + bi بالإحداثيات القطبية.

مسائل مهارات التفكير العليا

- 58) اكتشف الخطأ: يحاول كل من باسل وتوفيق كتابة المعادلة القطبية على الصورة الديكارتية، فيعتقد توفيق أن الحل هو $r=\sin heta$ في حين يعتقد باسل أن الحل هو $x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}$. أيهما كانت إجابته صحيحة؟ برِّر إجابتك. $y = \sin x$
 - تحدًّ: اكتب معادلة الدائرة $r = 2a\cos\theta$ بالصورة الديكارتية، وأوجد مركزها وطول نصف قطرها.
 - 60) اكتب: اكتب تخمينًا يبيِّن متى يكون تمثيل المعادلة على الصورة القطبيّة أسهل من تمثيلها على الصورة الديكارتية، ومتى يكون العكس صحيحًا.
 - برهان: استعمل $x = r \cos \theta$, $y = r \sin \theta$ لإثبات أن $\sin \theta \neq 0$, $\cos \theta \neq 0$ ميث $r = x \sec \theta$, $r = y \csc \theta$
 - 62) تحد اكتب المعادلة:

 $r^{2}(4\cos^{2}\theta + 3\sin^{2}\theta) + r(-8a\cos\theta + 6b\sin\theta) =$ $12 - 4a^2 - 3b^2$

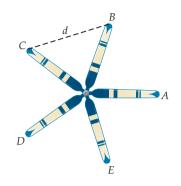
على الصورة الديكارتية. (إرشاد: فك الأقواس قبل تعويض قيم r^2 ، r. تمثّل المعادلة الدبكارتية قطعًا مخروطيًّا).

مراجعة تراكمية

مَثِّل كل نقطة مما يأتى في المستوى القطبي. (الدرس 1-2)

- $A(-2, 45^{\circ})$ (63
- D(1, 315°) (64
- $C\left(-1.5, -\frac{4\pi}{3}\right)$ (65

أوجد الزاوية بين المتجهين u, v في كل مما يأتي: (الدرس 1-3)


- u = (6, -4), v = (-5, -7) (66
 - $u = \langle 2, 3 \rangle, v = \langle -9, 6 \rangle$ (67)

تدریب علی اختبار

- رحم. (-2, $\frac{7\pi}{6}$) أيُّ من النقاط الآتية يعد تمثيلًا آخر للنقطة ($\frac{7\pi}{6}$, 2-) في المستوى القطبى؟
 - $(2,\frac{\pi}{6})$ **A**
 - $(-2, \frac{\pi}{6})$ **B**
 - $(2, \frac{-11\pi}{6})$ **C**
 - $(-2,\frac{11\pi}{6})$ **D**
 - ، ${\bf k}$ إذا كان ${\bf m}=\langle 5,-4 \rangle,$ ${\bf m}=\langle -7,3 \rangle$ إذا كان ${\bf k}={\bf k}={\bf m}$ ، فأيٌّ مما يأتي يمثِّل ${\bf k}={\bf k}={\bf k}$
 - $\langle -17, 11 \rangle$ A
 - $\langle -17, -5 \rangle$ **B**
 - $\langle 17, -11 \rangle$ **C**
 - $\langle -17, 5 \rangle$ **D**
 - $x^2 + (y-2)^2 = 4$ ما الصورة القطبية للمعادلة (77)
 - $r = \sin \theta \mathbf{A}$
 - $r = 2 \sin \theta \, \mathbf{B}$
 - $r = 4 \sin \theta$ **C**
 - $r = 8 \sin \theta$ **D**
 - ما حاصل الضرب الاتجاهي للمتجهين: $\mathbf{u} = \langle 6, -1, -2 \rangle, \mathbf{v} = \langle -1, -4, 2 \rangle$
 - $\langle -10, 10, 25 \rangle$ A
 - $\langle -10, -10, 25 \rangle$ **B**
 - $\langle -10, -10, -25 \rangle$ **C**
 - $\langle -10, 10, -25 \rangle$ **D**

68) طائرات: تتكون مروحة طائرة من 5 ريش، المسافة بين أطرافها المتتالية متساوية. ويبلغ طول كل ريشة منها 11.5 (الدرس 1-2)

- إذا كانت الزاوية التي تصنعها الشفرة A مع المحور القطبي °3،
 فاكتب زوجًا يمثّل الإحداثيات القطبية لطرف كل شفرة، بفرض أن مركز المروحة ينطبق على القطب.
 - ما المسافة d بين رأسي شفرتين متتاليتين؟

حل كلًّا من المعادلات الآتية باستعمال القانون العام. (مهارة سابقة)

- $x^2 7x = -15$ (69)
- $x^2 + 2x + 4 = 0$ (70)
- $12x^2 + 9x + 15 = 0$ (71)

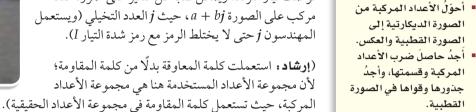
أوجد طول القطعة المستقيمة التي تصل بين النقطتين في كلِّ مما يأتي، وأوجد إحداثيات نقطة منتصفها: (الدرس 4-1)

- (2, -15, 12), (1, -11, 15) (72)
 - (-4, 2, 8), (9, 6, 0) (73
 - (7, 1, 5), (-2, -5, -11) (74

رفيونا رسياق:

درست إجراء العمليات الحسابية على الأعداد

المركبة. (مهارة سابقة)


الأعداد المركبة ونظرية ديموافر

Complex Numbers and De Moivre's Theorem

المادا (٩

يستعمل مهندسو الكهرباء الأعداد المركبة لوصف بعض العلاقات في الكهرباء. فالكميات: فرق الجهدV، والمعاوقة ن التي تستعمل $V = I \cdot Z$ ، وشدة التيار I ترتبط بالعلاقة Zلوصف تيار متردد. ويمكن كتابة كل متغير على صورة عدد مركب على الصورة a+bj، حيث j العدد التخيلي (ويستعمل

المفردانة،

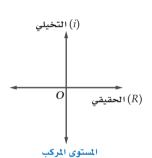
المستوى المركب complex plane المحور الحقيقى

real axis المحور التخيلي

imaginary axis القيمة المطلقة لعدد مركب

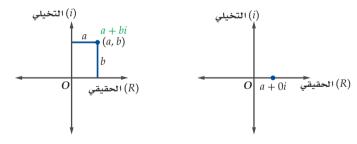
absolute value of a complex number

> الصورة القطبية polar form


الصورة المثلثية trigonometric form

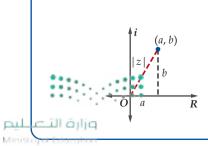
> المقياس modulus

argument


الجذور النونية للعدد واحد nth roots of unity

الصورة القطبية للأعداد المركبة الجزء الحقيقي للعدد المركب المُعطى على الصورة الديكارتية a + bi، هو a والجزء التخيلي bi. ويمكنك تمثيل العدد المركب على المستوى المركب بالنقطة (a,b). كما هو الحال في المستوى الإحداثي، فإننا نحتاج إلى محورين لتمثيل العدد المركب، ويُعيَّنُ الجزء الحقيقي على محور أفقى يُسمَّى المحور الحقيقي ويرمز له بالرمز R ، في حين يُعيَّنُ الجزء التخيلي على محور (R) الحقيقي رأسى يُسمَّى المحور التخيلي ويرمز له بالرمز i

في العدد المركب a+0i (لاحظ أن b=0). يكون الناتج عددًا حقيقيًّا يمكن تمثيله على خط الأعداد أو على المحور الحقيقي. وعندما $b\neq 0$ ، فإننا سنحتاج إلى المحور التخيلي لتمثيل الجزء التخيلي.



تذكُّر أن القيمة المطلقة لعدد حقيقي هي المسافة بين ذلك العدد والصفر على خط الأعداد، وبالمثل، فإن القيمة المطلقة لعدد مركب هي المسافة بين العدد والصفر في المستوى المركب. وعند تمثيل العدد a+bi في المستوى المركب. فإنه بالإمكان حساب بُعده عن الصفر باستعمال نظرية فيثاغورس.

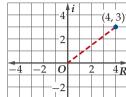
مفهوم أساسي القيمة المطلقة لعدد مركب

القيمة المطلقة للعدد المركب z = a + bi هي:

$$|z| = |a + bi| = \sqrt{a^2 + b^2}$$

تمثيل الأعداد المركبة وإبجاد قيمها المطلقة

مَثِّل كل عدد مما يأتي في المستوى المركَّب، وأوجد قيمته المطلقة:


$$z = 4 + 3i$$
 (a

(a, b) = (4, 3)

مـثال 1

$$z = -2 - i \qquad \textbf{(b)}$$

$$(a, b) = (-2, -1)$$

قعريف القيمة المطلقة
$$|z|=\sqrt{a^2+b^2}$$

$$a = -2$$
, $b = -1$ = $\sqrt{(-2)^2 + (-1)^2}$

$$=\sqrt{5}\approx 2.24$$

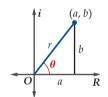
القيمة المطلقة للعدد i-2 تقريبًا.

تعريف القيمة المطلقة
$$|z|=\sqrt{a^2+b^2}$$

$$a=4, b=3$$
 $=\sqrt{4^2+3^2}$

بسُط
$$=\sqrt{25}=5$$

القيمة المطلقة للعدد 3i + 4 تساوى 5.


🚺 تحقق من فهمك

مَثِّل كل عدد مما يأتي في المستوى المركب، وأوجد قيمته المطلقة:

$$-3 + 4i$$
 (1B $5 + 2i$ (1A

الصورة القطبية:

يجب عدم الخلط بين الصورة القطبية للعدد المركب والإحداثيات القطبية للعدد المركب. فالصورة القطبية لعدد مركب هي طريقة أخرى لكتابة العدد المركب. وسوف نناقش الإحداثيات القطبية للعدد المركب لاحقًا في هذا الدرس.

كما كُتبت الإحداثيات الديكارتية (x, y) على صورة إحداثيات قطبية، فإنه يمكن كتابة الإحداثيات الديكارتية (a, b) التي تمثِّل عددًا مركبًا في المستوى المركب على الصورة القطبية. وتُطبق الدوال المثلثية نفسها التي استُعملت في إيجاد قيم x, y لإيجاد قيم a, b

$$\sin \theta = \frac{b}{r}$$
 , $\cos \theta = \frac{a}{r}$
 $r \sin \theta = b$ $r \cos \theta = a$

$$r \sin \theta = b$$
 اضرب کل طرف فی

وبتعويض التمثيلات القطبية لكل من b ، a ، يمكننا إيجاد الصورة القطبية أو الصورة المثلثية لعدد مركب.

العدد المركب الأصلى
$$z=a+bi$$

$$b = r \sin \theta$$
, $a = r \cos \theta$ = $r \cos \theta + (r \sin \theta)i$

خُذ العامل المشترك =
$$r(\cos \theta + i \sin \theta)$$

مفهوم أساسي

في حالة العدد المركب، فإن r تمثِّل القيمة المطلقة أو المقياس للعدد المركب، ويمكن إيجادها باستعمال الإجراء .. نفسه الذي استعملته لإيجاد القيمة المطلقة $\sqrt{a^2+b^2}$. $r=|z|=\sqrt{a^2+b^2}$ تُسمَّى الزاوية θ سعة العدد المركب. وبالمثل لإيجاد θ من الإحداثيات الديكارتية (x,y) ، فإنه عند استعمال الأعداد المركبة يكون . a < 0 عندما $\theta = \operatorname{Tan}^{-1} \frac{b}{a} + \pi$ أو a > 0 عندما $\theta = \operatorname{Tan}^{-1} \frac{b}{a}$

إرشادات للدراسة

كما في الإحداثيات القطبية، فإن θ ليست وحيدةً ، مع أنها تُعطى عادةً في الفترة $.-2\pi < \theta < 2\pi$

الصورة القطبية لعدد مركب

الصورة القطبية أو المثلثية للعدد المركب z=a+bi هي:

حيث ،
$$z = r (\cos \theta + i \sin \theta)$$

$$b = r \sin \theta \cdot a = r \cos \theta \cdot r = |z| = \sqrt{a^2 + b^2}$$

.
$$a < 0$$
 عندما $\theta = \mathrm{Tan}^{-1} \frac{b}{a} + \pi$ ، $a > 0$ عندما $\theta = \mathrm{Tan}^{-1} \frac{b}{a}$

$$b<0$$
 أما إذا كانت $a=0$ ، فإن $a=0$ إذا كانت $\theta=\frac{\pi}{2}$ ، فإن عانت

وزارة التعليد

(a, b)

الأعداد المركبة بالصورة القطبية

مـثال 2

عبّر عن كلّ عدد مركب مما يأتي بالصورة القطبية:

$$-6 + 8i$$
 (a

أوجد المقياس r والسعة θ .

$$heta={
m Tan}^{-1}rac{b}{a}+\pi$$
 $a<0$ صيغ التحويل، $r=\sqrt{a^2+b^2}$ $={
m Tan}^{-1}\left(-rac{8}{6}
ight)+\pipprox2.21$ $a=-6$, $b=8$ $=\sqrt{(-6)^2+8^2}=10$

لذا فإن الصورة القطبية للعدد 6+8i على -6+8i تقريبًا.

$4 + \sqrt{3}i$ (b)

$$heta=\mathrm{Tan}^{-1}rac{b}{a}$$
 $a>0$ صيغ التحويل، $r=\sqrt{a^2+b^2}$ $=\mathrm{Tan}^{-1}rac{\sqrt{3}}{4}$ $a=4,b=\sqrt{3}$ $=\sqrt{4^2+(\sqrt{3})^2}$ $pprox 0.41$ بسُط $=\sqrt{19}pprox 4.36$

لذا فإن الصورة القطبية للعدد $4+\sqrt{3}i$ لقريبًا. لذا فإن الصورة القطبية للعدد

🗹 تحقق من فهمك

عبّر عن كلّ عدد مركب مما يأتي بالصورة القطبية:

$$-2 - 2i$$
 (2B $9 + 7i$ (2A

ويمكنك استعمال الصورة القطبية لعدد مركب؛ لتمثيله في المستوى القطبي باستعمال ((r, θ)) كإحداثيات قطبية للعدد المركب. كما يمكنك تحويل عدد مركب مكتوب على الصورة القطبية إلى الصورة الديكارتية، وذلك باستعمال قيم (r, θ) ، وقيم النسب المثلثية للزاوية (r, θ) المعطاة.

مـثال 3 تمثيل الصورة القطبية لعدد مركب وتحويلها إلى الصورة الديكارتية

مثِّل العدد $z = 3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ مثِّل العدد $z = 3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ مثِّل العدد

 $\frac{\pi}{6}$ لاحظ أن قيمة r هي 3، وقيمة θ هي

 $(3, \frac{\pi}{6})$ عيِّن الإحداثيات القطبية

ولكتابة العدد على الصورة الديكارتية أوجد القيم المثلثية، ثم بَسِّط.

الصورة القطبية
$$3\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)$$

بايجاد قيم الجيب، وجيب التمام
$$= 3\left[\frac{\sqrt{3}}{2} + i\left(\frac{1}{2}\right)\right]$$

خاصية التوزيع =
$$\frac{3\sqrt{3}}{2} + \frac{3}{2}i$$

 $z=rac{3\sqrt{3}}{2}+rac{3}{2}i$ هي $z=3\left(\cosrac{\pi}{6}+i\sinrac{\pi}{6}
ight)$ فتكون الصورة الديكارتية للعدد

إرشاد تقني

تحويل الأعداد المركبة:

يمكن تحويل عدد مركب من الصورة القطبية إلى الصورة الديكارتية باستعمال الحاسبة البيانية من تطبيق تطبيق الحاسبة وإدخال العبارة على الصورة القطبية، مع مراعاة إعدادات الآلة الحاسبة بحيث تُعطي الصورة القطبية، الحاسبة بحيث تُعطي

70

🗹 تحقق من فهمك

مَثِّل كل عدد مركب مما يأتي في المستوى القطبي، ثم عبّر عنه بالصورة الديكارتية:

$$4\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$$
 (3B)

$$5\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$$
 (3A)

ضرب الأعداد المركبة وقسمتها وإيجاد قواها وجذورها تُعدَّ الصورة القطبية للعدد المركب، وصيغ المجموع، والفرق لكل من دالتي الجيب وجيب التمام مفيدةً للغاية في ضرب الأعداد المركبة وقسمتها. ويمكن اشتقاق صيغة ضرب عددين مركبين على الصورة القطبية على النحو الآتي:

 z_2 ، z_1 الصورة القطبيّة للعددين المركبين $z_1z_2=r_1(\cos\,\theta_1+i\sin\,\theta_1)\cdot r_2(\cos\,\theta_2+i\sin\,\theta_2)$

فك الأقواس $= r_1 r_2 (\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 + i^2 \sin \theta_1 \sin \theta_2)$

-1ب i^2 جمْع الحدود التخيلية والحقيقية، واستبدل $r_1r_2[(\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2)+(i\cos\theta_1\sin\theta_2+i\sin\theta_1\cos\theta_2)]$

اخرج i عاملًا مشترکًا $=r_1r_2[(\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2)+i(\cos\theta_1\sin\theta_2+\sin\theta_1\cos\theta_2)]$

متطابقتا جيب المجموع ، وجيب تمام المجموع = $r_1 r_2 [\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)]$

مفهوم أساسي ضرب الأعداد المركبة على الصورة القطبية وقسمتها

: فإن $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ ، $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ فإن للعددين المركبين

 $z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$ صيغة الضرب

 $r_2 \neq 0$ ، $z_2 \neq 0$ ميث ، $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)]$ ميغة القسمة

سوف تبرهن صيغة القسمة في التمرين 51

لاحظ أنه عند ضرب عددين مركبين، فإنك تضرب المقياسين وتجمع السعتين، وعند القسمة فإنك تقسم المقياسين وتطرح السعتين.

مثال 4 ضرب الأعداد المركبة على الصورة القطبية

أوجد ناتج $2\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right) \cdot 4\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)$ على الصورة القطبية، ثم عبّر عنه بالصورة الدبكارتية.

$$=2(4)\left[\cos\left(\frac{5\pi}{3}+\frac{\pi}{6}\right)+i\sin\left(\frac{5\pi}{3}+\frac{\pi}{6}\right)\right]$$
 صيغة المضرب

$$=8\left(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6}\right)$$

والآن أوجد الصورة الديكارتية للناتج.

الصورة القطبية
$$8\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$

أوجد قيم الجيب وجيب التمام
$$=8\left(\frac{\sqrt{3}}{2}-i\frac{1}{2}\right)$$

خاصية التوزيع
$$=4\sqrt{3}-4i$$

 $4\sqrt{3}-4i$ فتكون الصورة القطبية للناتج $\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6}$ ه والصورة الديكارتية

🗹 تحقق من فهمك

أوجد الناتج على الصورة القطبية، ثم عبر عنه بالصورة الديكارتية لكلِّ مما يأتى:

$$3\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)\cdot 5\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$$
 (4A)

 $6\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) \cdot 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$ (4B)

وزارة التعطيم

كما تقدم في فقرة "لماذا؟"، فإنه يمكن استعمال قسمة الأعداد المركبة للتعبير عن العلاقات في الكهربا&144 - 2021

قسمة الأعداد المركبة على الصورة القطبية

🥡 مثال 5 من واقع الحياة

 Ω تساوي Z تساوي Z اذا كان فرق الجهد Z في دائرة كهربائية يساوي Z المائية وكانت معاوقتها Z تساوي Z المائية باستعمال Z [Z المائية على الصورة القطبية باستعمال [Z المعادلة Z المعادل

اكتب العدد 150 على الصورة القطبية.

$$r = \sqrt{150^2 + 0^2} = 150, \theta = \text{Tan}^{-1} \frac{0}{150} = 0$$
 $150 = 150 (\cos 0 + j \sin 0)$

 $I \cdot I$ بالنسبة لـ $I \cdot Z = V$

المعادلة الأصلية
$$I \cdot Z = V$$

$$Z$$
اقسم کل طرف علی $I=rac{V}{Z}$

$$V = 150 (\cos 0 + j \sin 0), \qquad I = \frac{150 (\cos 0 + j \sin 0)}{3\sqrt{5} [\cos (-0.46) + j \sin (-0.46)]}$$

$$I = \frac{150}{3\sqrt{5}} \left\{ \cos \left[0 - (-0.46) \right] + j \sin \left[0 - (-0.46) \right] \right\}$$
 صيغة القسمة

بسّط
$$I = 10\sqrt{5} (\cos 0.46 + j \sin 0.46)$$

أي أن شدة التيار تساوي ($\sqrt{5}$ ($\cos 0.46 + j \sin 0.46$) أمبير تقريبًا.

5) كهرباء: إذا كان فرق جهد دائرة كهربائية $120\,\mathrm{V}$ ، وكانت شدة التيار (6j+8) أمبير، فأوجد معاوقتها على الصورة الديكارتية.

يعود الفضل في حساب قوى الأعداد المركبة وجذورها للعالم الفرنسي ديموافر، وقبل حساب قوى الأعداد المركبة وجذورها، فإن من المفيد كتابة العدد المركب على الصورة القطبية.

بإمكاننا استعمال صيغة ضرب الأعداد المركبة لتوضيح النمط الذي اكتشفه ديموافر.

أولًا: أوجد z^2 من خلال الضرب $z \cdot z$.

$$z \cdot z = r(\cos \theta + i \sin \theta) \cdot r(\cos \theta + i \sin \theta)$$

صيغة الضرب
$$z^2 = r^2 [\cos(\theta + \theta) + i \sin(\theta + \theta)]$$

بسُط
$$z^2 = r^2(\cos 2\theta + i \sin 2\theta)$$

 $z^2 \cdot z$ بحساب z^3 والآن أوجد

اضرب
$$z^2 \cdot z = r^2(\cos 2\theta + i \sin 2\theta) \cdot r(\cos \theta + i \sin \theta)$$

صيغة الضرب
$$z^3 = r^3 [\cos{(2\theta+\theta)} + i\sin{(2\theta+\theta)}]$$

بسُط
$$z^3 = r^3(\cos 3\theta + i \sin 3\theta)$$

لاحظ أنه عند حساب القوة النونية للعدد المركب، فإنك تجد القوّة النونية لمقياس العدد، وتضرب السعة في 11

مرارة التعطيم Ministry of Education 2021 - 1443

👸 الريمة مع الحياة

مهندسو الكهرباء يطور مهندسو الكهرباء تكنولوجيا جديدة لصناعة نظام تحديد المواقع والمحولات العملاقة التي تُشغِّل مدنًا كاملة ومحركات الطائرات وأنظمة الرادار والملاحة. كما أنهم يعملون على تطوير منتجات متعددة مثل الهواتف المحمولة والسيارات والرجل الآلي.

ويمكن تلخيص ذلك على النحو الآتي:

نظرية نظرية ديموافر

إذا كان $z=r(\cos\theta+i\sin\theta)$ عددًا مركبًا على الصورة القطبية، وكان عددًا صحيحًا موجبًا، فإن: $z^{n} = [r(\cos \theta + i \sin \theta)]^{n} = r^{n}(\cos n\theta + i \sin n\theta)$

🏐 تاريخ الرياضيات

إبراهام ديموافر (1667 م – 1754 م) رياضى فرنسى عُرف بالنظرية المسماة باسمه، وكتابه عن الاحتمالات هو Doctrine of Chances . ويُعدّ ديموافر من الرياضيين الرواد في الهندسة التحليلية والاحتمالات.

أوجد أوج $4 + 4\sqrt{3}i$ بالصورة القطبية، ثم عبّر عنه بالصورة الديكارتية.

أولًا: اكتب $4 + 4\sqrt{3}i$ على الصورة القطبية.

$$heta={
m Tan}^{-1}rac{b}{a}$$
 صيغ التحويل $r=\sqrt{a^2+b^2}$ $={
m Tan}^{-1}rac{4\sqrt{3}}{4}$ $a=4$, $b=4\sqrt{3}$ $=\sqrt{4^2+(4\sqrt{3})^2}$ $={
m Tan}^{-1}\sqrt{3}$ بسُم $=\sqrt{16+48}$ $=rac{\pi}{3}$

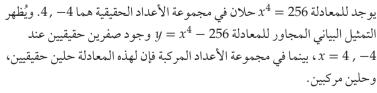
. $8\left(\cos{\frac{\pi}{3}}+i\sin{\frac{\pi}{3}}\right)$ هي $4+4\sqrt{3}i$ فتكون الصورة القطبية للعدد

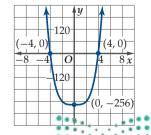
والآن استعمل نظرية ديمو افر؛ لإيجاد القوة السادسة.

الصورة القطبيّة
$$(4+4\sqrt{3}i)^6=\left[8\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)\right]^6$$
 $=8^6\left[\cos6\left(\frac{\pi}{3}\right)+i\sin6\left(\frac{\pi}{3}\right)\right]$ $=262144(\cos2\pi+i\sin2\pi)$ $=262144(1+0i)$ $=262144$

 $(4 + 4\sqrt{3}i)^6 = 262144$ أي أن

🚺 تحقق من فهمك


أوجد الناتج في كلِّ مما يأتي، وعبّر عنه بالصورة الديكارتية:


$$(2\sqrt{3}-2i)^8$$
 (6B $(1+\sqrt{3}i)^4$ (6A

النظرية الأساسية في الجبر

كل معادلة كثيرة حدود درجتها أكبر من صفر لها جدر واحد على الأقل ينتمي إلى مجموعة الأعداد المركبة.

مراجعة المفردات

درست سابقًا نتيجة النظرية الأساسية في الجبر، والتي تنص على وجود n صفرًا لمعادلة كثيرة الحدود من الدرجة ١١ في مجموعة الأعداد المركبة؛ لذا يكون للمعادلة

ي التي تكتب على الصورة $\hat{0} = 2.56 - \hat{0}$ أربعة حلول أو جذور مختلفة، وهي $\hat{x}^4 - 4,4i$. وبشكل عام، فإنه يوجد n جذر نوني مختلفٌ لأي عدد مركب لا يساوي الصفر حيث $2 \leq n$ ، بمعنى أنه لأي عدد n2021 - 1443 مركب جذران تربيعيان، وثلاثة جذور تكعيبية وأربعة جذور رباعية...، وهكذا. ولإيجاد جميع جذور عدد مركب يمكن أن تستعمل نظرية ديموافر للوصول إلى الصيغة الآتية:

مفهوم أساسي الجذور المختلفة

لأي عدد صحيح $n \geq 1$ ، فإن للعدد المركب $n \cdot r (\cos \theta + i \sin \theta)$ من الجذور النونية المختلفة، ويمكن إيجادها باستعمال الصيغة :

$$r^{\frac{1}{n}}\left(\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n}\right)$$

. k = 0, 1, 2, ..., n - 1حيث

ويمكننا استعمال هذه الصيغة لجميع قيم k الممكنة، إلا أنه يمكننا التوقف عندما k=n-1 ، وعندما يساوي k العدد n ، أو يزيد عليه تبدأ الجذور بالتكرار، كما يظهر في المعادلة:

$$k=0$$
 وهي مطابقة للزاوية التي تنتج عندما $rac{ heta+2\pi n}{n}=rac{ heta}{n}+2\pi$

مثال 7 جذور العدد المركب

أوجد الجذور الرباعية للعدد المركب 4i - 4 - 4

أولًا: اكتب 4i - 4 - 4 على الصورة القطبية.

$$r = \sqrt{(-4)^2 + (-4)^2} = \sqrt{32}$$
, $\theta = \text{Tan}^{-1} \frac{-4}{-4} + \pi = \frac{5\pi}{4}$ $-4 - 4i = \sqrt{32} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}\right)$

والآن اكتب الصيغة للجذور الرباعية.

$$\theta = \frac{5\pi}{4}, n = 4, r^{\frac{1}{n}} = (\sqrt{32})^{\frac{1}{4}} \qquad (\sqrt{32})^{\frac{1}{4}} \left(\cos\frac{\frac{5\pi}{4} + 2k\pi}{4} + i\sin\frac{\frac{5\pi}{4} + 2k\pi}{4}\right)$$

$$= \sqrt[8]{32} \left[\cos\left(\frac{5\pi}{16} + \frac{2k\pi}{4}\right) + i\sin\left(\frac{5\pi}{16} + \frac{2k\pi}{4}\right)\right]$$

k = 0, 1, 2, 3 ثانيًا: لإيجاد الجذور الرباعية، عوّض

$$k = 0$$
 $\sqrt[8]{32} \left[\cos \left(\frac{5\pi}{16} + \frac{2(0)\pi}{4} \right) + i \sin \left(\frac{5\pi}{16} + \frac{2(0)\pi}{4} \right) \right]$

الجنر الأول = $\sqrt[8]{32} \left(\cos \frac{5\pi}{16} + i \sin \frac{5\pi}{16} \right) \approx 0.86 + 1.28i$

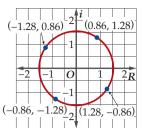
$$k = 1$$
 $\sqrt[8]{32} \left[\cos \left(\frac{5\pi}{16} + \frac{2(1)\pi}{4} \right) + i \sin \left(\frac{5\pi}{16} + \frac{2(1)\pi}{4} \right) \right]$

 $= \sqrt[8]{32} \left(\cos \frac{13\pi}{16} + i \sin \frac{13\pi}{16}\right) \approx -1.28 + 0.86i$

$$k = 2$$
 $\sqrt[8]{32} \left[\cos \left(\frac{5\pi}{16} + \frac{2(2)\pi}{4} \right) + i \sin \left(\frac{5\pi}{16} + \frac{2(2)\pi}{4} \right) \right]$

$$= \sqrt[8]{32} \left(\cos \frac{21\pi}{16} + i \sin \frac{21\pi}{16}\right) \approx -0.86 - 1.28i$$

$$k = 3$$
 $\sqrt[8]{32} \left[\cos \left(\frac{5\pi}{16} + \frac{2(3)\pi}{4} \right) + i \sin \left(\frac{5\pi}{16} + \frac{2(3)\pi}{4} \right) \right]$


الجذر الرابع =
$$\sqrt[8]{32} \left(\cos \frac{29\pi}{16} + i \sin \frac{29\pi}{16} \right) \approx 1.28 - 0.86i$$

 $0.86 + 1.28\,i$, $-1.28 + 0.86\,i$, $-0.86 - 1.28\,i$, $1.28 - 0.86\,i$ هي -4 - 4i الجذور الرباعية للعدد

تحقق من فهمك

مرارة التعليم Ministry of Education 2021 - 1443 **7B**) أو جد الجذور التكعسة للعدد 8

2 + 2i أوجد الجذور التكعيبية للعدد (7A)

لاحظ أن الجذور الأربعة التي أوجدناها في المثال 7 تقع على دائرة. فإذا نظرنا إلى الصورة القطبية لكل جذر، نجد أن لكل منها مقياسًا قيمته ($32 \approx 32 \%$)، ويمثل نصف قطر الدائرة. كما أن المسافات بين الجذور على الدائرة متساوية، وذلك نتيجة للفرق الثابت بين قيم السعة؛ إذ يساوي $\frac{2\pi}{4}$.

تحدث إحدى الحالات الخاصة عند إيجاد الجذور النونية للعدد 1، فعند كتابة 1 على $\begin{bmatrix} -1.20_{-2}(1.28, -0.86) \\ -1.20_{-2}(1.28, -0.86) \end{bmatrix}$ الصورة القطبية، فإننا نحصل على r = 1. وكما ذكرنا في الفقرة السابقة، فإن مقياس الحذور في المستدى المركب ؛ لذا فإن الحذور النونية للعدد

الجذور هو طول نصف قطر الدائرة الناتجة عن تمثيل الجذور في المستوى المركب؛ لذا فإن الجذور النونية للعدد. واحد تقع على دائرة الوحدة.

مـثال 8 الجذور النونية للعدد واحد

أوجد الجذور الثُّمانيَّة للعدد واحد.

إرشادات للدراسة

التوالي بإضافة $\frac{2\pi}{n}$.

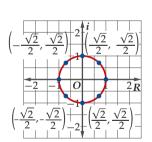
الجذور النونية لعدد مركب يكون للجذور المقياس نفسه

وهو $rac{\pi}{n}$. سعة الجنر الأول $rac{ heta}{n}$ ، ثم تزداد للجذور الأخرى على

أولًا: اكتب 1 على الصورة القطبية.

$$r = \sqrt{1^2 + 0^2} = 1$$
, $\theta = \text{Tan}^{-1} \frac{0}{1} = 0$ $1 = 1 \cdot (\cos 0 + i \sin 0)$

والآن اكتب الصيغة للجذور الثمانيَّة.


$$\theta = 0, n = 8, r^{\frac{1}{n}} = 1^{\frac{1}{8}} = 1$$
 $1\left(\cos\frac{0 + 2k\pi}{8} + i\sin\frac{0 + 2k\pi}{8}\right)$
= $\cos\frac{k\pi}{4} + i\sin\frac{k\pi}{4}$

ثانيًا: افترض أن k=0 لإيجاد الجذر الأول للعدد 1 .

$$k = 0 \quad \cos \frac{(0)\pi}{4} + i \sin \frac{(0)\pi}{4}$$
$$= \cos 0 + i \sin 0 = 1$$

لاحظ أن مقياس كل جذر هو 1، ويمكن إيجاد سعة الجذر الحالية بإضافة $\frac{\pi}{4}$ إلى سعة الجذر السابق.

الجذر الأول

$$\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i$$

$$\cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$$

$$\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

الجذر الخامس
$$\cos \pi + i \sin \pi = -1$$

الجنر السادس
$$\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i$$

$$\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -i$$

$$\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$

$$1, \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, i, -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, -1, -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i, -i, \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$$
 الجذور الثُّمانيَّة للعدد 1 هي الشكل أعلاه.

تحقق من فهمك

8A) أوجد الجذور التكعيبية للعدد واحد.

تدرب وحل المسائل

مَثِّل كل عدد مما يأتي في المستوى المركب، وأوجد قيمته المطلقة: (مثال 1)

$$z = 4 + 4i$$
 (1

$$z = -3 + i$$
 (2)

$$z = -4 - 6i$$
 (3

$$z = 2 - 5i$$
 (4)

$$z = -7 + 5i$$
 (5

$$z = 8 - 2i$$
 (6)

ركبة الموثرة على جسم بالعلاقة
$$i$$
 على القوة المؤثرة على جسم بالعلاقة i على حيث تُقاس كل مركبة للقوة بالنيوتن i (مثال i)

$$4 + 4i$$
 (8)

$$-2 + i$$
 (9)

$$4 - \sqrt{2}i$$
 (10

$$2 - 2i$$
 (11

$$4 + 5i$$
 (12)

$$-1 - \sqrt{3}i$$
 (13

مَثِّل كل عدد مركب مما يأتي في المستوى القطبي، ثم عبِّر عنه بالصورة الديكارتية: (مثال 3)

$$4\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right) (14$$

$$\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$
 (15)

$$2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$
 (16

$$\frac{3}{2}(\cos 360^{\circ} + i \sin 360^{\circ})$$
 (17)

أوجد الناتج في كلِّ مما يأتي على الصورة القطبية، ثم عبِّر عنه بالصورة الديكارتية: (المثالان 5,5)

$$6\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\cdot 4\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$$
 (18

$$5(\cos 135^{\circ} + i \sin 135^{\circ}) \cdot 2(\cos 45^{\circ} + i \sin 45^{\circ})$$
 (19

$$3\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)\div\frac{1}{2}(\cos\pi+i\sin\pi)$$
 (20)

$$2(\cos 90^{\circ} + i \sin 90^{\circ}) \cdot 2(\cos 270^{\circ} + i \sin 270^{\circ})$$
 (21

$$3\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right) \div 4\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$$
 (22)

$$4\left(\cos\frac{9\pi}{4} + i\sin\frac{9\pi}{4}\right) \div 2\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$
 (23)

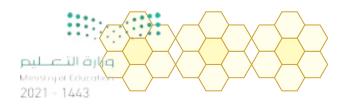
$$\frac{1}{2}(\cos 60^{\circ} + i \sin 60^{\circ}) \cdot 6(\cos 150^{\circ} + i \sin 150^{\circ})$$
 (24)

$$6\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right) \div 2\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$$
 (25)

$$5(\cos 180^{\circ} + i \sin 180^{\circ}) \cdot 2(\cos 135^{\circ} + i \sin 135^{\circ})$$
 (26)

$$\frac{1}{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \div 3 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$
 (27)

أوجد الناتج لكل مما يأتي بالصورة القطبية، ثم عبِّر عنه بالصورة الديكارتية: (مثال 6)


$$(2+2\sqrt{3}i)^6$$
 (28)

$$\left[4\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\right]^4$$
 (29)

$$(2+3i)^{-2}$$
 (30

$$\left[2\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\right]^4$$
 (31)

(32) تصميم: يعمل سالم في وكالة للإعلانات. ويرغب في تصميم لوحة مكونة من أشكال سداسية منتظمة كما هو مبيّن أدناه. ويستطيع تعيين رؤوس أحد هذه الأشكال السداسية بتمثيل حلول المعادلة $x^6-1=0$ في المستوى المركب. أوجد رؤوس أحد هذه الأشكال السداسية. (مثال 7)

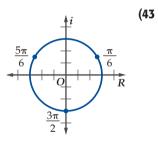
أوجد جميع الجذور المطلوبة للعدد المركب في كل مما يأتي: (المثالان 8,7)

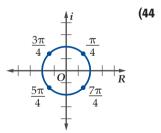
- i الجذور السداسية للعدد (33)
- $4\sqrt{3}-4i$ الجذور الرباعية للعدد (34
- -3-4i الجذور التربيعية للعدد (35)
- 36) كهرباء: تُعطَى معاوقة أحد أجزاء دائرة كهربائية موصولة على التوالي بالعبارة $\Omega(0.9)$ Ω $\Omega(0.9)$ ، وتُعطَى في الجزء الآخر من الدائرة بالعبارة $\Omega(0.4)$ $\Omega(0.4)$.
 - a حَوِّل كلَّا من العبارتين السابقتين إلى الصورة الديكارتية.
- b) اجمع الناتجين في الفرع a؛ لإيجاد المعاوقة الكلية في الدائرة.
 - c حَوِّل المعاوقة الكلية إلى الصورة القطبية.
- 37) كسريات: الكسريات شكل هندسي يتكون من نمط مكرر بشكل مستمر، وتكون الكسريات ذاتية التشابه؛ أي أن الأجزاء الصغيرة للشكل لها الخصائص الهندسية نفسها للشكل الأصلي، كما في الشكل أدناه.

في هذا السؤال سوف تنتج كسريات من خلال تكرار z^2 ، حيث $z_0=0.8+0.5\,i$

- $z_1=f(z_0)$ حيث z_1 , z_2 , z_3 , z_4 , z_5 , z_6 احسب (a $z_2=f(z_1)$
 - b) مَثِّل كل عدد في المستوى المركب.
 - c) صِف النمط الناتج.

38) أوجد العدد المركب z إذا علمت أن (-1-i) هو أحد جذوره الرباعية، ثم أوجد جذوره الرباعية الأخرى.


حُلّ كلًّا من المعادلات الآتية باستعمال صيغة الجذور المختلفة:


- $x^3 = i$ (39)
- $x^4 = 81i$ (40
- $x^3 + 1 = i$ (41)

مسائل مهارات التفكير العليا

اكتشف الخطأ: يَحسبُ كل من أحمد وباسم قيمة $\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^5$. فيستعمل أحمد نظرية ديموافر ويحصل على الإجابة $\frac{5\pi}{6} + i \sin \frac{5\pi}{6}$. ويقول باسمُ بأن أحمدَ قد أنجز جزءًا من المسألة فقط. أيهما إجابته صحيحة؟ بَرِّر إجابتك.

تحدِّ: أوجد الجذور المحدّدة على كل من المنحنيين أدناه على الصورة القطبية، ثم عيِّن العدد المركب الذي له هذه الجذور.

تدريب على اختبار

- - $\langle -8, -2, 3 \rangle, \sqrt{77}$ A
 - $(8, -2, 3), \sqrt{77}$ B
 - $(-8, -2, 3), \sqrt{109}$ **C**
 - $\langle 8, -2, 3 \rangle, \sqrt{109}$ **D**
 - $\left(-3, \frac{5\pi}{3}\right)$ ما المسافة بين النقطة (57 والنقطة $\left(6, \frac{\pi}{4}\right)$ والنقطة (57 والنقطة (57 ما النقطة (57 ما ا
 - 3.97 **A**
 - 4.97 **B**
 - 5.97 **C**
 - 6.97 **D**
- 58) أي مما يأتي يمثِّل تقريبًا الصورة القطبية للعدد المركب 21i 20؟
 - $29(\cos 5.47 + i \sin 5.47)$ **A**
 - $29(\cos 5.52 + i \sin 5.52)$ **B**
 - $32(\cos 5.47 + i \sin 5.47)$ **C**
 - $32(\cos 5.52 + i \sin 5.52)$ **D**

- $z_1=r_1(\cos\,\theta_1+i\sin\,\theta_1)$ برهان: إذا كان (45
- - $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 \theta_2) + i \sin(\theta_1 \theta_2)]$
- (46) تحدًّ: اكتب $\cos 3\theta$ بدلالة $\cos 3\theta$ مستعماً للظرية ديموافر. إرشاد: أوجد قيمة $\cos \theta + i \sin \theta$ مرة باستعمال نظرية ديموافر، ومرة باستعمال مفكوك نظرية ذات الحدين.
 - اكتب: وضِّح خطوات إيجاد الجذور النونية للعدد المركب (47 درقة على المركب n عدد صحيح موجب. $z = r(\cos\theta + i\sin\theta)$

مراجعة تراكمية

مثِّل كل نقطة مما يأتي في المستوى القطبي: (الدرس 1-2)

- $Q\left(4, -\frac{5\pi}{6}\right)$ (48
- $P(4.5, -210^{\circ})$ (49

اكتب كل معادلة مما يأتي على الصورة القطبية: (الدرس 2-2)

- $(x-3)^2 + y^2 = 9$ (50)
 - $x^2 + y^2 = 2y$ (51)

أوجد المسافة بين كل زوج من النقاط مما يأتي: (الدرس ١-2)

- $(2, \frac{\pi}{6}), (5, \frac{2\pi}{3})$ (52
- $(1, -45^{\circ}), (-5, 210^{\circ})$ (53

حوّل الإحداثيات القطبيّة لكل نقطة مما يأتي إلى إحداثيات ديكارتية: (المدرس 2-2)

- $(5, \frac{\pi}{3})$ (54)
- $(4,210^{\circ})$ (55

2021 - 1443

ملخص الفصل

مفاهيم أساسية

الإحداثيات القطبية (الدرس 2-1)

- يُعَيُّن موقع النقطة (r, θ) في نظام الإحداثيات القطبية باستعمال المسافة المتجهة r والزاوية المتجهة θ .
- المسافة بين النقطتين $P_1(r_1,\,\theta_1)$, $P_2(r_2,\,\theta_2)$ في المستوى القطبي هي:

$$P_1 P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos(\theta_2 - \theta_1)}$$

الصورة القطبية والصورة الديكارتية للمعادلات (الدرس 2-2)

- $(r\cos\theta,r\sin\theta)$ هي $P(r,\theta)$ هي الإحداثيات الديكارتية للنقطة •
- لتحويل إحداثيات نقطة P(x,y) من الإحداثيات الديكارتية $r=\sqrt{x^2+y^2}$ إلى الإحداثيات القطبية استعمل المعادلات $\theta={\rm Tan}^{-1}\frac{y}{x}+\pi$ أو x>0 عندما 0< x<0 عندما 0< x<0

الأعداد المركبة ونظرية ديموافر (الدرس 3-2)

- a+bi الصورة القطبية أو المثلثية للعدد المركب $r(\cos\theta+i\sin\theta)$ هي
- z_2 ، z_1 هي: z_2 هي: z_1 هيددين مركبين z_2 هي: z_1 هي: $z_1z_2=r_1r_2\left[\cos\left(\theta_1+\theta_2\right)+i\sin\left(\theta_1+\theta_2\right)\right]$
 - صيغة القسمة لعددين مركبين z_2 ، z_2 هي:
- $rac{z_1}{z_2} = rac{r_1}{r_2} \left[\cos\left(\theta_1 \theta_2\right) + i\sin\left(\theta_1 \theta_2\right)
 ight], r_2 \neq 0$ $z = r(\cos\theta + i\sin\theta)$ تنص نظرية ديموافر على أنه إذا كانت
- $z=r(\cos\theta+i\sin\theta)$ تنص نظرية ديموافر على أنه إذا كانت $z=r(\cos\theta+i\sin\theta)$ هي الصورة القطبية لعدد مركب، فإن $z^n=r^n\left(\cos n\theta+i\sin n\theta\right)$ ، حيث $z^n=r^n\left(\cos n\theta+i\sin n\theta\right)$ حيث $z^n=r^n$

الجذور المختلفة:

 $r(\cos \theta + i \sin \theta)$ لأي عدد صحيح $n \geq 2$ فإن للعدد المركب $n \geq 2$ عدد صحيح n من الجذور النونية المختلفة ويمكن إيجادها باستعمال الصيغة n

$$r^{\frac{1}{n}} \left(\cos\frac{\theta + 2k\pi}{n} + i\sin\frac{\theta + 2k\pi}{n}\right)$$
 . $k = 0, 1, 2, ..., n - 1$ حيث

المضردات

 نظام الإحداثيات القطبية ص 52
 المحور التخيلي ص 68

 القطب ص 52
 القيمة المطلقة لعدد مركب ص 68

 المحور القطبي ص 52
 الصورة القطبية ص 69

 الإحداثيات القطبية ص 52
 المقياس ص 69

 المعادلة القطبية ص 54
 السعة ص 69

 التمثيل القطبي ص 54
 الجذور النونيّة للعدد واحد ص 75

 المستوى المركب ص 68
 المحور الحقيقي ص 68

اختس مفرداتك

اختر المفردة المناسبة من القائمة أعلاه لإكمال كل جملة مما يأتى:

- (1) التي تحقق معادلة قطبية معطاة.
 - 2) المستوى الذي يحوي محوراً يمثّل الجزء الحقيقي، وآخر يمثل الجزء التخيلي هو ______.
 - لَيُحدد موقع نقطة في _____ باستعمال المسافة المتجه من نقطة ثابتة إلى النقطة نفسها، وزاوية متجهة من محور ثابت.
 - (4) $r(\cos \theta + i \sin \theta)$ لعدد مركب مكتوب على الصورة: $r(\cos \theta + i \sin \theta)$
 - 5) تُسمَّى نقطة الأصل في نظام الإحداثيات القطبية بـ
 - 6) تُسمَّى القيمة المطلقة لعدد مركب بـ
 - 7) ______ هو اسم آخر للمستوى المركب.
- 8) ______ هو نصف مستقيم ممتد من القطب، ويكون أفقيًّا باتجاه اليمين.

مراجعة الدروس

الإحداثيات القطبية (الصفحات 58 - 52)

2-1

مَثِّل كلِّ نقطة مما يأتي في المستوى القطبي:

$$X(1.5, \frac{7\pi}{4})$$
 (10 $W(-0.5, -210^{\circ})$ (9

$$W(-0.5, -210^{\circ})$$

$$Z(-3, \frac{5\pi}{6})$$
 (12

مَثِّل كلِّ معادلة من المعادلات القطبية الآتية بيانيًّا:

$$r = \frac{9}{2}$$
 (14)

$$\theta = -60^{\circ}$$
 (13

$$\theta = \frac{11\pi}{6}$$
 (16

$$r = 7$$
 (15)

أوجد المسافة بين كل زوج من النقاط مما يأتي:

$$(-3,60^{\circ}), (4,240^{\circ})$$
 (18

$$(-3, 60^{\circ}), (4, 240^{\circ})$$
 (18 $\left(5, \frac{\pi}{2}\right), \left(2, -\frac{7\pi}{6}\right)$ (17

$$\left(7,\frac{5\pi}{6}\right),\left(2,\frac{4\pi}{3}\right)$$

$$\left(7, \frac{5\pi}{6}\right), \left(2, \frac{4\pi}{3}\right)$$
 (20 $(-1, -45^{\circ}), (6, 270^{\circ})$ (19

حلول المعادلة r=5 هي الأزواج المرتبة $(5,\, heta)$ ، حيث θ أي عدد حقيقي. ويتكون التمثيل من جميع النقاط التي تبعد 5 وحدات عن

القطب، لذا فإن التمثيل هو دائرة مركزها القطب، وطول نصف قطرها

الصورة القطبية والصورة الديكارتية للمعادلات (الصفحات 67 - 59)

2-2

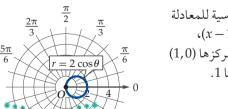
اكتب المعادلة $r=2\cos\theta$ على الصورة الديكارتية، ثم حدِّد نوع تمثيلها البياني.

> $r = 2 \cos \theta$ المعادلة الأصلية

 $r^2 = 2r \cos \theta$ اضرب الطرفين في ٢

 $x^2 + y^2 = 2x$ $x = r \cos \theta$, $r^2 = x^2 + y^2$

> $x^2 + y^2 - 2x = 0$ اطرح 2x من الطرفين


> > أى أن الصورة القياسية للمعادلة $(x-1)^2 + y^2 = 1$:

مـثال 2

مثال 1

مَثِّل المعادلة r=5 بيانيًّا في المستوى القطبي.

وهي معادلة دائرة مركزها (1,0) وطول نصف قطرها 1.

اكتب كلّ معادلة على الصورة الديكارتية، وحدّد نوع تمثيلها البياني:

أوجد زوجين مختلفين كل منهما يمثِّل إحداثيين قطبيين لكل نقطة معطاة

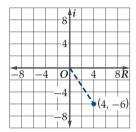
 $-2\pi \leq heta \leq \pi$ بالإحداثيّات الديكارتيّة في كلِّ مما يأتى، حيث

r = 5 (24)

(-1, 5) (21)

(3, 7) (22

(1,2) (23)


 $r = -4 \sin \theta$ (25)

 $r = 6 \sec \theta$ (26

 $r = \frac{1}{2} \csc \theta$ (27)

مشال 3

مَثِّل 6i-4 في المستوى المركب، ثم عبِّر عنه بالصورة القطبية.

أوجد المقياس.

ميغة التحويل
$$r = \sqrt{a^2 + b^2}$$
 $a = 4$, $b = -6$ $= \sqrt{4^2 + (-6)^2} = 2\sqrt{13}$

أوجد السعة.

$$heta=\mathrm{Tan}^{-1}rac{b}{a}$$
 $a=4$, $b=-6$ $=\mathrm{Tan}^{-1}\left(-rac{6}{4}
ight)$ $pprox -0.98$

فتكون الصورة القطبية للعدد 4-6i هي: $2\sqrt{13} \left[(\cos(-0.98) + i \sin(-0.98) \right]$ تقريبًا.

مـثال 4

$$3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\cdot 5\left(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6}\right)$$
 وجد ناتج على الصورة القطبية، ثم حوِّله إلى الصورة الديكارتية.

العبارة المعطاة
$$3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\cdot 5\left(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6}\right)$$
 العبارة المعطاة $=(3\cdot5)\left[\cos\left(\frac{\pi}{4}+\frac{7\pi}{6}\right)+i\sin\left(\frac{\pi}{4}+\frac{7\pi}{6}\right)\right]$ بسُمل $=15\left[\cos\left(\frac{17\pi}{12}\right)+i\sin\left(\frac{17\pi}{12}\right)\right]$

والآن أوجد الصورة الديكارتية لناتج الضرب.

الصورة القطبية
$$15\left[\cos\left(\frac{17\pi}{12}\right)+i\sin\left(\frac{17\pi}{12}\right)
ight]$$
 $=15\left[-0.26+i(-0.966)\right]$

عاصية التوزيع =-3.9-14.5i

فتكون الصورة الديكارتية لناتج الضرب 14.5*i* – 3.9 – تقريبًا.

وزارة التعطيع

مَثّل كل عدد مما يأتي في المستوى المركب، وأوجد قيمته المطلقة:

$$z = 4i$$
 (29 $z = 3 - i$ (28

$$z = 6 - 3i$$
 (31 $z = -4 + 2i$ (30

عبّر عن كل عدد مركب مما يأتي بالصورة القطبية:

$$-5 + 8i$$
 (33 $3 + \sqrt{2}i$ (32

$$\sqrt{2} + \sqrt{2}i$$
 (35 $-4 - \sqrt{3}i$ (34

مَثِّل كل عدد مركب مما يأتي في المستوى القطبي، ثم عبِّر عنه بالصورة الديكارتية:

$$z = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
 (36)

$$z = 5\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
 (37)

$$z = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
 (38)

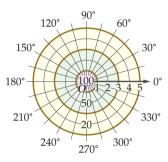
$$z = 4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$
 (39)

أوجد الناتج في كل مما يأتي على الصورة القطبية، ثم عبّر عنه بالصورة الديكارتية:

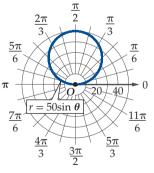
$$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) \cdot 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
 (40)

$$8(\cos 225^{\circ} + i \sin 225^{\circ}) \cdot \frac{1}{2}(\cos 120^{\circ} + i \sin 120^{\circ})$$
 (41)

$$5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \div \frac{1}{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
 (42)


$$6(\cos 210^{\circ} + i \sin 210^{\circ}) \div 3(\cos 150^{\circ} + i \sin 150^{\circ})$$
 (43

44) أوجد قيمة
$$\sqrt[4]{2} + 3i$$
) بالصور القطبية، ثم اكتبه على الصورة الديكارتية.

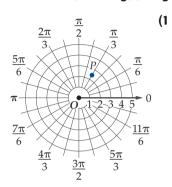

.1 +
$$i$$
 أوجد الجذور الرباعية للعدد المركب (45)

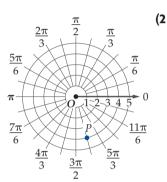
تطبيقات ومسائل

46) أثعاب: قُسِّمت لوحة السهام إلى 3 مناطق كما هو موضّح في الشكل أدناه، بحيث يحصل اللاعب على 100 نقطة عند إصابته المنطقة القريبة من القطب، وعلى 50 نقطة عند إصابته المنطقة المتوسطة، و 20 نقطة عند إصابته المنطقة البعيدة. (الدرس 2-1)

- إذا أصاب اللاعب النقطة (°3.5, 165) ، فما عدد النقاط التي يحصل عليها؟
- **b** حدِّد موقعين، بحيث يحصل اللاعب على 50 نقطة عند إصابة أي منهما؟
 - 47) حدائق: تستعمل شركة عناية بالحدائق رشاشًا قابلًا للتعديل، ويستطيع الدوران °360، ويروي منطقة دائرية طول نصف قطرها 20ft. (الدرس 1-2)
 - a) مثِّل المنطقة التي يستطيع الرشاش رَيَّها في المستوى القطبي.
- له أوجد مساحة المنطقة التي يستطيع الرشاش ريَّها، إذا ضُبط ليدور في الفترة $-30^\circ \leq \theta \leq 210^\circ$.
 - 48) عجلة دوّارة: يمكن تمثيل مسار العجلة الدوّارة في الشكل أدناه بالمعادلة r=50 r=50 r=50

- عيّن الإحداثيين القطبيين لموقع راكب إذا علمت أنه يقع عند $\theta = \frac{\pi}{12}$. (قرب إلى أقرب جزء من عشرة إذا لزم الأمر).
- عين الإحداثيين الديكارتيين لموقع الراكب مقربًا إلى أقرب جزء من عشرة إذا لزم الأمر.
- إذا وقع القطب على سطح الأرض، فما ارتفاع ذلك الراكب مقرّبًا إلى أقرب قدم؟


49) كهرباء: تُصمَّم معظم الدوائر الكهربائية لتتحمل فرق جهدٍ قدره .220V


V استعمل المعادلة $V = I \cdot Z$ ، حيث فرق الجهد الفولت، والمعاوقة Z بالأوم، وشدة التيار I بالأمبير (قرب إلى أقرب جزء من عشرة). (الدرس 2-3)

- إذا كانت شدة التيار المار بالدائرة (5j+5) أمبير، فأوجد المعاوقة.
- ليار. (\mathbf{b}) إذا كانت معاوقة الدائرة $\Omega(3j)$ ، فأوجد شدة التيار.
- (50) تحويل جوكوسكي (Jowkoski)؛ يُعيِّن تحويل جوكوسكي لكل عدد مركب ($z = r (\cos \theta + i \sin \theta)$) عدد مركب $z = r (\cos \theta + i \sin \theta)$. أو جد صورة العدد المركب ($w = z + \frac{1}{z}$) وفق هذا التحويل. (الدرس 2-3)

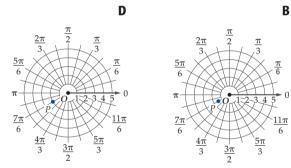
أوجد ثلاثة أزواج مختلفة يمثِّل كل منها إحداثيات قطبية للنقطة P في كل من التمثيلين 2 ρ ، حيث ρ عن التمثيلين 2 ، 1 ، حيث ρ

مَثِّل بيانيًّا في المستوى القطبي كلًّا من المعادلات الآتية:

$$r = 1$$
 (4

$$\theta = 30^{\circ}$$
 (3

$$\theta = \frac{5\pi}{3}$$
 (6


r = 2.5 **(5**

7) رادار: يقوم مراقب الحركة الجوية بتتبع مسار طائرة موقعها الحالي عند النقطة (°66, 115) ، حيث r بالأميال.

- a عيِّن الإحداثيين الديكارتيين للطائرة. مقرِّبًا الناتج إلى أقرب ميل.
 - إذا وُجدت طائرة عند نقطة إحداثياتها الديكارتية (75 ,50)،
 فعيِّن الإحداثيين القطبيين لها مقرِّبًا المسافة إلى أقرب ميل،
 والزاوية إلى أقرب جزء من عشرة إذا لزم الأمر.
 - ۵) ما المسافة بين الطائرتين؟ قرّب الناتج إلى أقرب ميل.

- 8) عبّر عن المعادلة $y^2 = 49 + y^2 = 49$ ، بالصورة القطبية.
- و) كهرباء: إذا كان فرق الجهدV في دائرة كهربائية V135V، وكانت شدة التيار المار بها I هو (4j) أمبير، فأوجد معاوقة الدائرة I بالإحداثيات الديكار تبة مستعملًا المعادلة I0.
- (10) اختيار من متعدد: أي مما يأتي يبين تمثيل العدد المركب الذي إحداثياته الديكارتية $(1-\sqrt{3},-1)$ في المستوى القطبي؟

أوجد كل قوة مما يأتي على الصورة الديكارتية، وقرِّب إلى أقرب عدد صحيح إذا لزم الأمر:

$$(-1+4i)^3$$
 (11)

$$(6+i)^4$$
 (12

ارة التعليم Ministry of Education 2021 - 1443

الاحتمال والإحصاء **Probability and Statistics**

الفصل **3**

درست إحصائيات العينة ومعالم المجتمع واحتمالات الحوادث المركبة.

رواالدرناية

- أميّز المسوحات، والدراسات والتجارب.
- أكون التوزيعات الاُحتمالية، وتمثيلاتها البيانية، وأستعملها في إيجاد الاحتمال.
- أستعمل القانون التجريبي لإيجاد الاحتمالات.
 - أميزبين العينة الإحصائية، والمجتمع الإحصائي.

الماذا ا

👣 التربية: يستعمل الاحتمال والإحصاء في دراسة الفرضيات التربوية واختبارها. حيث تُستعمل المسوحات، وتجرى التجارب؛ لتحديد الطرائق التعليمية التي تؤدي إلى تعلم أفضل. ويستعمل الإحصاء في تحديد الدرجات عند تمثيل درجات الفصول بيانيًّا، أو عندما يريد المعلمون تقييم درجات الطلاب.

قراءة سابقة: كون قائمة بالأشياء التي تعرفها عن الاحتمال والإحصاء، ثم تنبأ بما ستتعلمه في هذا الفصل.

التهيئة للفصل 3

مراجعة المفردات

التباديل (Permutations):

هي تنظيم لمجموعة من العناصر، حيث يكون الترتيب فيها مهمًّا.

التوافيق (Combinations):

هي تنظيم لمجموعة من العناصر، حيث يكون الترتيب فيها غير مهم.

الحادثتان المستقلتان (Independent Events):

تكون A و B حادثتين مستقلتين، إذا كان احتمال حدوث A لا يؤثر في احتمال حدوث B.

الحادثتان غير المستقلتين (Dependent Events):

A تكون A و B حادثتين غير مستقلتين، إذا كان احتمال حدوث B يغيّر بطريقة ما احتمال حدوث B.

الحادثتان المتنافيتان (Mutually Exclusive Events):

تكون A و B حادثتين متنافيتين، إذا لم يكن وقوعهما ممكنًا في الوقت نفسه.

نظرية ذات الحدين (Binomial Theorem):

إذا كان n عددًا طبيعيًّا، فإن:

 $(a+b)^n$

 $= {}_{n}C_{0}a^{n}b^{0} + {}_{n}C_{1}a^{n-1}b^{1} + {}_{n}C_{2}a^{n-2}b^{2} + \dots + {}_{n}C_{n}a^{0}b^{n}$

 $= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{n-k} b^{k}$

فضاء العينة (Sample Space):

هو مجموعة النواتج الممكنة لتجربة ما.

الاحتمال (Probability):

هو النسبة التي تقيس فرصة وقوع حادثةٍ معينةٍ.

مرارة التعليم Ministry of Education 2021 - 1443

اختبار سريع

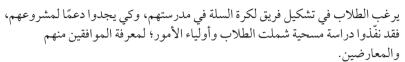
حدِّد ما إذا كانت الحوادث الآتية مستقلة، أو غير مستقلة.

- 1) اختيار قصة وكتاب آخر لا يمثِّل قصة من مكتبة.
- 2) اختيار رئيس، ونائب رئيس، وسكرتير، ومحاسب في ناد، على افتراض أنَّ الشخص الواحد لا يشغل سوى منصب واحد.
 - اختيار طالب ومعلم ومشرف اجتماعي للمشاركة في تنظيم الرحلات المدرسية.

حدّد ما إذا كانت كل حالة من الحالات الآتية تتطلب تطبيق التباديل أو التوافيق في حلّها:

- 4) اصطفاف سبعة أشخاص في صف واحد عند المحاسب في أحد المتاجر.
 - **5)** ترتيب أحرف كلمة «مدرسة».
 - 6) اختيار نكهتين مختلفتين لفطيرة من بين 6 نكهات.

اكتب مفكوك كل من العبارات الآتية:


- $(a-2)^4$ (7
- $(2a + b)^6$ (8
- $(3x 2y)^5$ (9
 - $\left(\frac{a}{2} + 2\right)^5$ (10

الدراسات التجريبية والمسحية والقائمة على الملاحظة

Experiments, Surveys, and Observational Studies

المادا (9

الدراسات التجريبية والمسحية تُستعمل الدراسات المسحية في جمع البيانات، وإذا شملت عملية جمع البيانات جميع الطلاب في مدرسة ما، نقول: إن الدراسة شملت <mark>المجتمع</mark>، وفي هذه الحالة تُسمّى هذه العملية <mark>تعدادًا عامًّا</mark>. أمّا إذا تم احتيار عدد محدود من طلاب المدرسة مثل 100طالب، فتكون الدراسة المسحية قد اعتمدت على العينة. وتكون العينة متحيزة عندما يتم تفضيل بعض أقسام المجتمع على باقي الأقسام، فمثلًا: إذا شملت الدراسة المسحية الواردة في فقرة "لماذا؟" رأي لاعبي كرة السلة وأولياء أمورهم فقط، تكون العينة متحيزة. وتكون العينة غير متحيزة إذا تم اختيارها عشوائيًّا، أي إذا كان لكل شخص في المجتمع الفرصة نفسها لأن يكون ضمن عينة الدراسة، فإذا أُرسلت استبانة في دراسة مسحية لـ 100 طالب تم اختيارهم عشوائيًّا عندها تكون العينة غير متحيزة.

🥡 مثال 1 من واقع الحياة

العينات المتحيزة وغير المتحيزة

دراسات مسحية : حدِّد ما إذا كانت كل دراسة مسحية فيما يأتي تتبني عينة متحيزة، أو غير متحيزة، وفسّر إجابتك:

- a) سؤال كل عاشر شخص يخرج من قاعة الندوات عن عدد مرات حضوره ندوات ثقافية؛ لتحديد مدى دعم سكان المدينة للندوات الثقافية.
- متحيزة؛ لأن الأشخاص الذين تم سؤالهم قد يختلفون عن سكان المدينة، حيث إنهم ممن يحضرون الندوات
- b) استطلاع آراء أفراد في سوق الماشية؛ لمعرفة ما إذا كان سكان المدينة يحبون تربية الماشية أو لا . متحيزة؛ لأن المجموعة التي تم مسح رأيها لا تُمثّل بالضرورة رأي أهل المدينة؛ لأنهم غالبًا ممن يحبون تربية
 - c) يحتوي صندوق على أسماء طلاب المدرسة جميعهم، سُحب من الصندوق 100 اسم عشوائيًّا، وسُئل أصحابها عن رأيهم في مقصف المدرسة.
 - غير متحيزة؛ لأن لكل شخص في مجتمع الدراسة الفرصة نفسها لأن يكون ضمن عينة الدراسة الذين استُطلِعت آراؤهم.

🗹 تحقق من فهمك

حدِّد ما إذا كانت كل دراسة مسحية فيما يأتي تتبنى عينة متحيزة، أو غير متحيزة، وفسّر إجابتك:

- المؤال كل لاعب في فريق كرة السلة عن الرياضة التي يحب مشاهدتها على التلفاز.التلفاز.
- **1B)** الذهاب إلى ملعب كرة القدم وسؤال 100 شخص اختيروا عشوائيًّا عن رياضتهم المفضلة.

وزارة التعطيم لتجنُّب التحيِّز في الدراسات المسحية المعتمدة على العينات لا بدِّ من تحقّق أمرين هما: أن تكون العينة العشوائية مناسبة، وذلك بأن تكون غير متحيزة وحجمها كبير نسبيًا، وألا تكون الأسئلة المطروحة متحيزة.

رقيما رسيقره

درست تصمیم دراسة مسحية. (مهارة سابقة)

- أميّز الدراسات المسحية، والدراسات القائمة على الملاحظة والدراسات التجريبية.
 - أميزبين الارتباط والسببية.

المفردات

الدراسة المسحية survey

> المجتمع population

التعداد العام

census

العينة sample

المتحيزة

biased

غير المتحيزة unbiased

الدراسة القائمة على الملاحظة

observational study

المجموعة التجريبية

treatment group المجموعة الضابطة

control group

الارتباط

correlation

السببية causation

إرشادات للدراسة

العينة المتحيزة

تعدّ العينة متحيزة إذا وفقط إذا كانت غير عشوائية.

🧳 مثال 2 من واقع الحياة

تصميم الدراسات المسحية

دراسات مسحية في المدرسة: يريد خالد أن يُحدّد أفضل الأماكن للرحلة المدرسية. ما الأسئلة التي تعطيه الإجابة التي يبحث عنها دون تحيُّز؟

- a) هل تحب الذهاب إلى مركز الملك عبدالعزيز التاريخي؟ هذا سؤال متحيز لصالح مكان محدد.
- b) هل تحب الذهاب إلى حديقة الحيوان، أم إلى متنزَّه سلام؟ هذا سؤال متحيز؛ لأنه يحدد بديلين بالاسم.
- أين تفضل أن تذهب في الرحلة؟
 هذا سؤال غير متحيز؛ لأنه يعطى الإجابة التي يبحث عنها دون تحيّز.

🗹 تحقق من فهمك

أي مما يأتي يُحدّد أفضل مادة بالنسبة إلى الطلاب دون تحيُّز؟

- 2A) هل تفضل المادة التي خرجت من حصتها الآن؟
 - 2B) أيهما تفضل أكثر: العلوم أو الرياضيات؟
 - 2C) ما مادتك المفضلة؟

إرشادات للدراسة

المعالجة الشكلية

التي يخضع لها أفراد المجموعة الضابطة، والتي ليس لها أي تأثير في نتائج الدراسة، والهدف من عدم معرفة الأفراد لأي المجموعتين التجريبية أو محاولة تأثير بعضهم في نتائج الدراسة، وذلك ببدل المزيد من الجهد مثلًا أو العكس.

في الدراسة القائمة على الملاحظة، تتم ملاحظة الأفراد دون أي محاولة للتأثير في النتائج. وفي الدراسة التجريبية، يتم إجراء معالجة خاصة على الأشخاص أو الحيوانات أو الأشياء قيد الدراسة، وتجرى ملاحظة استجاباتهم.

دراسة قائمة على الملاحظة

- من 100 شخص، اختر 50 شخصًا خضعوا لمعالجة.
 - اجمع البيانات، وحلّلها، وفسّرها.

دراسة تجريبية

- من 100 شخص، اختر من بينهم 50 شخصًا عشوائيًّا وأخضعهم للمعالجة المقصودة بالتجريب، بينما لا تخضع الآخرين لأي معالجة أو لمعالجة شكلية.
 - اجمع البيانات، وحلِّلها، وفسّرها.

في الدراسة التجريبية، يُسمّى الأشخاص أو الحيوانات أو الأشياء التي تخضع للمعالجة المجموعة التجريبية. أمّا الأشخاص أو الحيوانات أو الأشياء الذين لا يخضعون للمعالجة أو يخضعون لمعالجة شكلية، فيسمون المجموعة الخسابطة. وتعطى المعالجة الشكلية لكي لا يعرف أفراد المجموعات لأي المجموعتين ينتمون، وتصبح الدراسة التجريبية عندها غير متحيزة.

🥡 مثال 3 من واقع الحياة 💎 الدراسات التجريبية والدراسات القائمة على الملاحظة

حدِّد ما إذا كان كل موقف ممّا يأتي يمثِّل دراسة تجريبية، أو دراسة قائمة على الملاحظة. وفي حالة الدراسة التجريبية اذكر كلَّا من المجموعة الضابطة والمجموعة التجريبية، ثم بيِّن ما إذا كانت الدراسة التجريبية متحيزة أم لا.

- اختر 200 طالب نصفهم خضع لأنشطة إضافية في مادة معينة، وقارن بين درجاتهم في تلك المادة.
 هذه دراسة قائمة على الملاحظة.
- اختر 200 طالب واقسمهم عشوائيًّا إلى نصفين، وأخضع إحدى المجموعتين إلى برنامج تدريبي معيّن، أمّا الأخرى فلا تخضعها لأي برنامج تدريبي.

هذه دراسة تجريبية؛ لأنه تم تقسيم المجموعتين عشوائيًّا، وإحداهما خضعت للبرنامج التدريبي وهي المجموعة التجريبية، والأخرى لم تخضع لأي برنامج تدريبي وهي المجموعة الضابطة، وهي دراسة متحيزة؛ لأن كل طالب يعرف المجموعة التي ينتمي إليها.

🔽 تحقق من فهمك

حدّد ما إذا كان الموقف الآتي يمثّل دراسة تجريبية، أو دراسة قائمة على الملاحظة، وفي حالة الدراسة التجريبية اذكر كلَّا من المجموعة الضابطة والمجموعة التجريبية، ثم بيّن ما إذا كانت الدراسة التجريبية متحيزةً أم لا.

3) اختر 80 طالبًا جامعيًّا نصفهم درس الإحصاء في المدرسة الثانوية، وقارن نتائج المجموعتين في مساق المدرسة الثانوية، وقارن نتائج المجموعتين في مساق المدرسة للإحصاء تم تدريسه في الجامعة.

كيف تعرف متى تُستعمل الدراسات المسحية أو الدراسات التجريبية أو الدراسات القائمة على الملاحظة؟ تستعمل الدراسات المسحية عند الرغبة في جمع بيانات، أو آراء أفراد المجتمع حول موضوع معين، بينما تُستعمل الدراسات القائمة على الملاحظة عند الرغبة في دراسة أثر معالجة سابقة تعرض لها أفراد من المجتمع دون أي تأثير عليهم من الباحث، وتستعمل الدراسات التجريبية عند الرغبة في اختبار طريقة جديدة، أو في دراسة نتائج معالجة مقصودة يؤثر الباحث بها في مجموعة من الأفراد يتم تعيينهم عشوائيًا.

مثال 4 الدراسات المسحية والتجريبية والقائمة على الملاحظة

حدِّد ما إذا كانت كل من الحالات الآتية تتطلب دراسة مسحية، أو دراسة قائمة على الملاحظة، أو دراسة تجريبية، وفسّر إجابتك:

- a) تريد أن تختبر طريقة معالجة لمرض ما.
- يستدعي ذلك إجراء دراسة تجريبيّة يكون المستهدفون فيها مرضى يشكّلون المجموعة التجريبية، وتخضع هذه المجموعة للعلاج، بينما يخضع أفراد المجموعة الضابطة الآخرون وهم مرضى كذلك لعلاج شكلي.
- **(b)** تريد أن تجمع آراءً حول القواعد المعتمَدة في انتخاب رئيس الصف. يستدعي هذا دراسة مسحية للآراء، حيث من الأفضل أن تختار أشخاصًا من الصف بصورة عشوائية؛ لتحصل على عينة غير متحيزة.
- تريد أن تعرف ما إذا كان التدخين لمدة 10 سنوات يؤثّر في سعة الرئة أو لا. يستدعي هذا إجراء دراسة قائمة على الملاحظة تقارن فيها سعة رئة المدخنين لمدة 10 سنوات، مع سعة الرئة لعدد مساوِ لهم من غير المدخنين.

🗹 تحقق من فهمك

حدّد ما إذا كانت الحالة الآتية تتطلب دراسة مسحية، أو دراسة قائمة على الملاحظة، أو دراسة تجريبية، فسّر إجابتك.

4) تريد استطلاع آراء طلاب مدرسة ثانوية حول وسيلة المواصلات المدرسية باستعمال مقياس متدرج من 1 (لا أوافق مطلقًا) إلى 5 (أوافق بشدة).

التمييز بين الارتباط والسببية إن أي علاقة تظهر بين نتائج التجربة والمعالجة لا تعني بالضرورة أن المعالجة هي السبب في النتيجة.

فعندما يوجد ارتباط بين ظاهرتين، فإن كلَّا من الظاهرتين تؤثر في الأخرى فإن معرفتك بقيم الظاهرة الأولى يمكِّنك من التنبؤ بقيم الظاهرة الثانية، والعكس صحيح، فمثلًا: هناك ارتباط بين كتل الأشخاص وأطوالهم، فكلما زاد طول الشخص زادت كتلته بشكل عام، فإذا عرفت طول شخص يمكنك التنبؤ بكتلته. وعندما يوجد سببية، فإن وقوع ظاهرة معينة يكون سببًا مباشرًا في وقوع الظاهرة الأخرى لذا فإن السببية تتضمن الترتيب الزمني، فوقوع الظاهرة الأولى أولًا يكون سببًا في وقوع الظاهرة الأولى أولًا يكون سببًا في وقوع الظاهرة الثانية لاحقًا كنتيجة لذلك، فمثلًا: دوران الأرض حول محورها هو السبب الوحيد في تعاقب الليل والنهار. وبينما يكون من السهل ملاحظة الارتباط بين ظاهرتين، فإنه من الصعب البرهنة على وجود سببية بين الظاهرتين.

مثال 5 الارتباط والسببية

بيّن ما إذا كانت العبارات الآتية تُظهر ارتباطًا، أو سببية، ثم فسر إجابتك:

- a) أظهرت الدراسات أن الطلاب يكونون أقل نشاطًا بعد تناول الغداء .
- العبارة تظهر ارتباطًا فقط، ولا تظهر سببية؛ لأن تناول الغداء ليس سببًا مباشرًا ولا كافيًّا وحده لقلة النشاط لدى الطلاب، فهناك عوامل أخرى تشترك معه، مثل نوعية وكمية الغداء.
- لإذا رَفعتُ أثقالًا، أستطيع الالتحاق بفريق كرة القدم. العبارة تظهر ارتباطًا؛ لأن رفع الاثقال وحده ليس سببًا مباشرًا للالتحاق بفريق كرة القدم، فقد تكون هناك متطلبات أخرى تشترك معه، مثل: المهارة واللياقة وغيرها.
- عندما ترى الشمس يكون النهار قد طلع.
 العبارة الواردة تظهر سببية؛ لأنه ليس هناك عوامل أخرى مع الشمس يلزم وجودها لت بب طلوع النهار

🚺 تحقق من فهمك

بيّن ما إذا كانت العبارة الآتية تُظهر ارتباطًا، أو سببية، ثم فسّر إجابتك.

5) عندما أدرس أحصل على تقدير ممتاز.

إرشادات للدراسة

لسببية

إذا لم يوجد أي سبب آخر يعطي النتيجة فإنك تفترض السببية.

وزارة التعليم Ministry of Education 2021 - 1443

تدرب وحل المسائل

حدّد ما إذا كانت كلُّ دراسة مسحية فيما يأتي تتبنَّى عينة متحيزة، أو غير متحيزة، وفسّر إجابتك: (مثال 1)

- 1) استطلاع رأي كل ثالث شخص يخرج من مطعم للمشويات؛ لمعرفة الوجبة المفضلة للناس.
- الاستفسار من طلاب صف معين من المتميزين في مادة العلوم عن أفضل المواد لديهم.
- **3)** الاستفسار من الطالب الذي ترتيبه 20 من كل 20 طالبًا يخرجون من مدرستك، عن الطالب الذي سيصو تون له في انتخابات المجلس الطلابي.
 - 4) دراسة مسحية: بيِّن ما إذا كانت الدراسة المسحية الآتية تتبنى عينة متحيزة أو غير متحيزة، فسِّر إجابتك. استطلاع آراء طلاب في كلية الطب؛ لمعرفة المهنة المستقبلية المفضلة لدى الشباب.

حدّد سؤال الدراسة المسحية الذي تحصل منه على الإجابة المطلوبة بشكل أفضل. (مثال 2)

- 5) يريد زاهر أن يحدد فريق كرة القدم الأكثر شعبية في المملكة.
- a) ما اسم فريق كرة القدم الذي تفضله في مدينة الرياض؟
 - b ما اسم فريق كرة القدم الذي تفضله في المملكة؟
 - ما مدى تقديرك لفرق كرة القدم في المملكة؟
- 6) يريد سليمان أن يحدد الرغبة في تكوين أول نادٍ للشطرنج في المدرسة.
 - a في أي يوم ترغب في أن تتأخر في المدرسة؟
 - b) هل تحب الشطرنج؟
 - c هل تحب أن تنضم إلى نادي الشطرنج في المدرسة؟
 - 7) يريد هاني أن يتعرف إلى الطالب المثالي في المدرسة.
 - a) من ترى أنه الطالب المثالي في المدرسة؟
- b) هل تُفضّل الطالب الذي لا يبادر بالمساعدة، أم الذي يبادر بها؟
 - (c) إذا طُلِب إليك إبداء الرأي، فهل تفعل؟

حدّد ما إذا كان كل موقف من المواقف الآتية يمثِّل دراسة تجريبية، أو دراسة قائمة على الملاحظة، وفي حالة الدراسة التجريبية، اذكر كلَّا من المجموعة الضابطة والمجموعة التجريبية، ثم بيِّن ما إذا كانت الدراسة التجريبية متحيزة أم لا: (مثال 3)

 8) قبل الاختبار، قام المعلم باختيار شعبتين من الصف نفسه بشكل عشوائي، وقام بمراجعة المادة لطلاب إحداهما، بينما لم يراجع المادة لطلاب الشعبة الأخرى. ثم قام بمقارنة نتائج الاختبار لهما.

- وجد عادل 100 شخص، نصفهم متطوعون في مأوى الفقراء، وقارن
 بين متوسطي الدخل السنوي لأفراد المجموعتين.
- 10) اختر 300 شخص، واقسِّمهم عشوائيًّا إلى مجموعتين: إحداهما تقرأ القرآن لمدة ساعة قبل النوم، والأخرى لا تفعل شيئًا، ثم قارن بين كيفية نوم كل من المجموعتين.
- 11) اختر 250 شخصًا نصفهم في الفِرق الرياضية، وقارن بين كمية الوقت الذي يمضونه في حل الواجبات.
 - 12) اختر 100 طالب نصفهم في نادي اللغة الإنجليزية، وقارن بين درجاتهم في اللغة الإنجليزية.

حدّد ما إذا كانت كل من الحالات الآتية تتطلب دراسة مسحية، أو دراسة قائمة على الملاحظة، أو دراسة تجريبية، وفسّر إجابتك: (مثال 4)

- 13) تريد اختبار علاج لمعالجة الصلع عند الرجال.
- 14) تريد استطلاع آراء أشخاص حول سياسة جديدة لشركة.
- 15) تريد معرفة ما إذا كان عدد سنوات الركض يؤثّر في حركة الركبة أو لا.
- 16) تريد معرفة ما إذا كانت المشروبات الغازية تؤثّر في جدار المعدة أو لا.
 - 17) تريد اختبار معالجة معينة تبعد الحيوانات عن البساتين التي تحوي غز لانًا.

بيّن ما إذا كانت كل من العبارات الآتية تظهر ارتباطًا، أو سببية، وفسّر إجابتك: (مثال 5)

- 18) عندما أمارس الرياضة، أكون في وضع نفسي أفضل.
- 19) عندما يكون الجو باردًا وممطرًا بغزارة، لا نذهب إلى المدرسة.
- 20) عندما يكون الطقس حارًا في فصل الصيف، يكثر بيع المشروبات الباردة.
 - 21) كثرة القراءة تجعلك أكثر ذكاءً.
 - 22) دلَّت الأبحاث على أن من يتقن أكثر من لغة، يكون أقل إمكانية للإصابة بالمرض.
 - 23) النوم بحذائك يؤدي إلى شعورك بالصداع.
- 24) استبانات: توزّع شركة استبانات على العاملين الذين تركوا العمل في الشركة، وكان أحد أسئلة الاستبانة هو كيف يرى العامل خبرته التي اكتسبها في الشركة؟ هل هذه دراسة مسحية متحيزة؟ فسّر السبب.

2021 - 1443

مسائل مهارات التفكير العليا

25) اكتشف الخطأ: طُلب إلى كل من سامي وهشام أن يصمم دراسة تجريبية غير متحيزة. هل وفّق أي منهما في ذلك؟ فسّر إجابتك.

سامي

- · خد مجهوعة من 20 شخصًا بطريقة عشوائية.
- اطلب إلى نصفهم عشوائيًا الالتزام بحمية
 تعتمد على الفواكه بالكامل لمدة 3 أسابيع .
 - قارت بين أوزانهم بعد الأسابيح الثلاثة.

هشام

- · خذ 20 لاعبًا لكرة القدم.
- اطلب إلى نصفهم عشوائيًا أن يقفزوا 500 قفزة إلى أعلى في اليوم.
- · قارن عددمرات القفز إلى أعلى التي تستطيح كل مجموعة تنفيذها بعد الأسابيع الثلاثة.
- 26) تحدُّ: كيف تظهر الدراسة المسحية عبر الهاتف تحيِّرًا للعينة؟
- 27) اكتب: قارن من خلال ذكر أوجه الشبه وأوجه الاختلاف بين العينة العشوائية في اختيار الأفراد من المجتمع، وبيِّن الاختيار العشوائي لأفراد المجموعة الضابطة في الدراسة التجريبية.
- 28) مسألة مفتوحة: اذكر مثالًا من واقع الحياة لكل دراسة ممّا يأتي، وحدِّد عدد أفراد العينة، وكيفية اختيارها.
 - a) مسحية
 - b) قائمة على االملاحظة
 - تجریبیة
- 29) تبرير: كيف يحدث التحيّز في الدراسة التجريبية؟ وكيف يؤثّر في النتيجة؟ أعطِ مثالًا على ذلك.

مراجعة تراكمية

اذا كان $(\mathbf{v} = \langle 1, 6 \rangle, \mathbf{u} = \langle 2, -3 \rangle$ إذا كان $\mathbf{v} = \langle 1, 6 \rangle$ إذا كان $\mathbf{v} = \langle 1, 6 \rangle$

- 2 u (30
- v + u (31
- 2u v (32)

أوجد الصورة الإحداثية، وطول \overline{AB} المعطاة نقطتا بدايته ونهايته في كلِّ مما يأتي: (الدرس 4-1)

- A(2,2,7), B(1,3,-4) (33
- A(4, 5, 10), B(7, 1, 8) (34)

حوّل الإحداثيات القطبية إلى إحداثيات ديكارتية لكلِّ نقطة مما يأتي: (المدرس 2-2)

- $(3,90^{\circ})$ (35
- $(2,210^{\circ})$ (36
 - $(\frac{1}{2}, \frac{\pi}{4})$ (37)

عبّر عن كل عدد مركب مما يأتي بالصورة القطبية: (الدرس 2-3)

- 6 + 8i (38)
- -1 i (39)

تدريب على اختبار

حدِّد ما إذا كانت كل حالة من الحالات الآتية تمثِّل دراسة تجريبية أو دراسة قائمة على الملاحظة، وإذا كانت دراسة تجريبية، فحدِّد المجموعة التجريبية والمجموعة الضابطة، ثم بيّن ما إذا كانت متحيزة أو لا.

- 40) اختر 220 شخصًا عشوائيًّا، وقسمهم عشوائيًّا إلى مجموعتين. إحداهما تقوم بالتدريبات الرياضية مدة ساعةً واحدة يوميًّا، والأخرى لا تقوم بهذه التدريبات، ثم قارن بين كتلة الجسم لكل من المجموعتين.
 - 41) اختر 200 طالب، نصفهم يمارس كرة القدم، وقارن فترة النوم بين المجموعتين.
- 42) اختر 100 طالب جامعي، نصفهم لديه وظيفة بدوام جزئي، وقارن معدلاتهم التراكمية.

2021 - 1443

3

معمل الحاسبة البيانية : تقويم البيانات المنشورة Evaluating Published Data

يمكنك استعمال الحاسبة البيانية TI-nspire، مع تطبيق القوائم وجداول البيانات لتقويم البيانات التي يمكن الحصول عليها في الواقع.

يبين الجدول أدناه عدد السيارات التي باعها معرض للسيارات خلال الفترة 2009–1985، وقد قام المعرض بتمثيل هذه البيانات بالأعمدة البيانية كما في الشكل المجاور؛ وعرضها في إحدى الصحف، وذلك لدعم المقولة بأن مبيعات المعرض تزداد بشكل كبير جدًّا. هل هذا صحيح؟

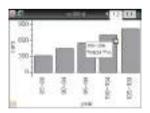
2005–2009	2000–2004	1995–1999	1990–1994	1985–1989	السنوات
823	704	561	451	316	عدد السيارات المبيعة

نشاط

تقويم التمثيل البياني للبيانات .

الخطوة 1 أدخل البيانات في صفحة من تطبيق القوائم وجداول البيانات.

- اضغط 🚳 ومنها اختر 🧾.
- اكتب عنوان البيانات (years) في أعلى العمود (A) وَ (cars) في أعلى العمود (B).
- لإدخال فئات السنوات في كل خلية بالضغط على 10 ثم اختيار 1 ، فمثلًا لإدخال الفئة الأولى من السنوات في الخلية A_1 اكتب "85-88" ثم اضغط 10 ، وكرّر ذلك لبقية فئات السنوات.
 - استعمل الأسهم لإظهار الخلية B₁، ثم أدخل البيانات لكل فئة من السنوات.


الخطوة 2 مثِّل البيانات التي تم إدخالها بالأعمدة.

- اختر years في القائمة × year أو cars في قائمة موجزة و cars أو صفحة جديدة من عرض في صفحة جديدة ألم اضغط موافق .
- لمشاهدة المعلومات عن أي عمود في التمثيل البياني، قم بالإشارة إلى ذلك العمود فتظهر معلوماته كما هو موضح في الشكل المجاور.

حلّل النتائج

قارن تمثيلك البياني بتمثيل الصحيفة.

- 1) هل يعرض التمثيلان البيانات نفسها؟
- 2) أي التمثيلين يُظهر أن مبيعات المعرض تزداد بشكل أكبر ؟ ولماذا؟
- 3) لماذا اختار المعرَض أن يعرض بياناته بهذه الطريقة؟ هل هي مقبولة؟ ولماذا؟

Ministry of Education 2021 - 1443

التحليل الإحصائي Statistical Analysis

شارك أمجد في 18 سباقًا جبليًّا للدراجات خلال العام الماضي، ويُمثّل الجدول المجاور الزمن بالدقائق والثواني الذي استغرقه للوصول إلى خط النهاية في كل منها. أي من مقاييس النزعة المركزية يفضل أن يستعمله أمجد لوصف هذه الأزمنة؟ إن إيجاد أحد مقاييس النزعة المركزية لوصف البيانات وتلخيصها، والوصول إلى الاستنتاجات المتعلقة بالدراسة يُسَمى التحليل الإحصائع لها.

التحليل الإحصائي البيانات الموجودة في الجدول أعلاه تشتمل على متغير؛ لذا تُسمى بيانات في متغير واحد. ولوصف مثل هذه البيانات، يُستعمل أحد <mark>مقاييس النزعة المركزية</mark>، الذي يشير إلى متوسط البيانات أُو منتصفها (مركزها)، وأبرز هذه المقاييس هو المتوسط الحسابي والوسيط والمنوال.

والآن: اختار مقياس لوصف البيانات يمكن استعمال الجدول أدناه:

			-		17.5	100
ı	7:20	6:59	7:29	6:49	7:03	6:51
ı	6:48	6:52	6:50	7:01	6:49	6:57
ı	6:53	7:07	6:54	6:56	7:09	7:02
			and the	-		

	مقاييس النزعة المركزية	مفهوم أساسي
أكثر فائدةً عندما	التعريف	المقياس
لا توجد في البيانات قيم متطرفة.	مجموع القيم مقسومًا على عددها	المتوسط الحسابي
توجد في البيانات قيم متطرفة، ولا توجد فجوات كبيرة في منتصف البيانات.	العدد الذي يشغل موقع المنتصف عند ترتيب القيم تنازليًا أو تصاعديًا في مجموعة بيانات عددها فرديٌ، أو هو المتوسط للعددين الموجودين في المنتصف، في مجموعة بيانات عددها زوجي ومرتبة ترتيبًا تصاعديًا أو تنازليًا.	الوسيط
تحوي البيانات قيمًا متكررة.	القيمة الأكثر تكرارًا أو شيوعًا بين القيم.	المنوال

🥡 مثال 1 من واقع الحياة

مقاييس النزعة المركزية

a) زمن السباق: إشارة إلى البيانات في سباق الدراجات أعلاه، أيّ مقاييس النزعة المركزية يصف البيانات بصورة أفضل؟ ولماذا؟

بما أن البيانات تنتشر ولا يظهر فيها قيم متطرفة، يكون المتوسط هو الأفضل.

b أيّ من مقاييس النزعة المركزية يناسب البيانات في الجدول المجاور؟ ولماذا؟ بما أنه توجد قيم متطرفة ولا يوجد فجوات كبيرة في منتصف البيانات، فإن الوسيط أفضل من غيره لتمثيل البيانات.

17 16 15 12 16 18 18 18 14 16

✓ تحقق من فهمك

1) تمنح مؤسسة جائزة كبرى قيمتها 20000 ريال، و30 جائزة أخرى قيمة كل منها 500 ريال، أي مقاييس النزعة المركزية يلائم البيانات بصورة أفضل؟ ولماذا؟

يوجد نوعان من المقاييس يمكن استعمالهما لمجموعة من البيانات، هما المَعْلَمة وهو مقياس يصف خاصية في المجتمع. والإحصائي وهو مقياس يصف خاصية في العينة. فمتوسط دخل الفرد في المملكة هو مثال على المَعْلَمة، أما دخل الفرد في مدينتك التي تسكنها، فهو مثال على الإحصائي. ويتم تحديد مجتمع الدراسة في ضوء الهدف من الدراسة، فإذا أراد باحث مثلًا تعرف مدى رضا معلِّمِي الرياضيات عن المناهج الجديدة في المملكة، فإن مجتمع الدراسة يكون جَميع معلِّمِي الرياّضيات الذين يدرِّسوّن المناهج الجديدة في المملكة، ولصعوبة إجراء الدراسة على جميع المعلمين، فإنه يتم اختيار مجموعة صغيرة والتي تمثل عينة الدراسة. Ministry of Education

رفيونا رسياق: درست مقاييس النزعة

المركزية ومقاييس التشتت. (مهارة سابقة)

اوالغرب

- أختار مقياس النزعة المركزية الأنسب لتمثيل
- أجد هامش خطأ المعاينة وأستعمله.
- أستعمل مقاييس التشتت لمقارنة مجموعات من البيانات.

المفردانة

التحليل الإحصائي statistical analysis

> المتغير variable

بيانات ف*ي م*تغير واحد univariate data

مقاييس النزعة المركزية measure of central tendency

المعلمة

parameter

الإحصائي

Statistic

هامش خطأ المعاينة

margin of sampling error

مقياس التشتت

measure of variation

التباين

variance

الانحراف المعياري standard deviation

إرشادات للدراسة

القيمة المتطرفة

هي واحدة من البيانات أكبر أو أصغر كثيرًا من بقية البيانات. وعند سحب عينة من مجتمع فهنالك خطورة من وجود خطأ في المعاينة ناتج عن إجراء الدراسة على عينة من المجتمع وليس على المجتمع بأكمله يسمى هامش خطأ المعاينة. وكلما زاد حجم العينة قلَّ هامش خطأ المعاينة، ويُحدِّد هامش خطأ المعاينة الفترة التي تدل على مدى اختلاف استجابة العينة عن المجتمع، وهذا يعني أنه يصف المدى الذي تقع فيه نسبة المجتمع فيما إذا أجريت الدراسة على المجتمع بأكمله.

مفهوم أساسي هامش خطأ المعاينة

 $\pm rac{1}{\sqrt{n}}$ عند سحب عينة حجمها n من مجتمع كلي، فإنه يمكن تقريب هامش خطأ المعاينة بالقيمة

مثال 2 المعاينة

في دراسة مسحية عشوائية شملت 2148 شخصًا، أفاد %58 منهم أن كرة القدم هي لعبتهم المفضّلة.

a ما هامش خطأ المعاينة؟

هامش خطأ المعاينة قانون هامش خطأ المعاينة
$$\pm \frac{1}{\sqrt{n}}$$

$$n = 2148 \qquad \approx \pm \frac{1}{\sqrt{2148}}$$

$$pprox \pm 0.0216$$

إذن هامش الخطأ للمعاينة 2.16% تقريبًا.

له ما الفترة الممكنة التي تتضمّن نسبة المجتمع الذين أفادوا أن كرة القدم هي لعبتهم المفضلة؟

$$58\% - 2.16\% = 55.84\%$$
 $58\% + 2.16\% = 60.16\%$

الفترة الممكنة التي تتضمن نسبة المجتمع الذين أفادوا بأن كرة القدم هي لعبتهم المفضلة تقع بين %55.84 و %60.16 أي تقع في الفترة (%60.16 , %55.84).

تحقق من فهمك

في دراسة مسحية عشوائية شملت 3247 شخصًا، قال 41% منهم: إنهم مرتاحون للنهضة العلمية.

2A) ما هامش خطأ المعاينة؟

مضهوم أساسي

2B) ما الفترة الممكنة التي تتضمن نسبة أفراد المجتمع المرتاحين للنهضة العلمية؟

مقاييس التشتت تصف مقاييس التشتت مقدار تباعد البيانات أو تقاربها، ومن أشهر مقاييس التشتت التباين، والانحراف المعياري. ويصف هذان المقياسان مدى بعد مجموعة البيانات عن المتوسط أو قربها منه.

يُمثّل الرمز \overline{x} المتوسط للعينة ويُقرأ "x بار"، ويمثّل الرمز μ المتوسط للمجتمع ويُقرأ "ميو". ويحسب كل من المتوسط للعينة والمتوسط للعينة والمتوسط للعينة والمتوسط للمجتمع بالطريقة ذاتها، أمّا طريقة حساب الانحراف المعياري لكل من بيانات العينة وبيانات المجتمع، فتختلف، وفيما يأتي توضيح لطريقة حساب كل من الانحراف المعياري للعينة)ويُرمز له بالرمز σ ويقرأ "سيجما").

إرشادات للدراسة

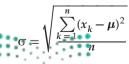
إرشادات للدراسة

كتابة هامش خطأ المعاينة

نكتب هامش خطأ المعاينة عادة على صورة نسبة مئوية.

مقاييس التشتت

درست سابقًا مقاييس التشتت (المدى، الربيعات، المدى الربيعي، الانحراف المتوسط.


قانونا الانحراف المعياري

العينة

$$s = \sqrt{\frac{\sum_{k=1}^{n} (x_k - \bar{x})^2}{n-1}}$$

حيث n عدد قيم العينة وَ \overline{x} المتوسط الحسابي للعينة وَ x_k قيم العينة.

المجتمع

حيث n عدد قيم المجتمع و x المتوسط الحسابي للمجتمع و x قيم المجتمع.

2021 - 1443

🥡 مثال 3 من واقع الحياة

الانحراف المعياري

درجات اختبار: حصل طلاب المعلم صالح في اختبارين متتاليين على المتوسط نفسه في اختبار الرياضيات وهو 75. إذا علمت أن درجات الاختبارين كما يأتي:

الاختيار A

85, 80, 75, 75, 70, 75, 75, 65, 75, 75, 75, 80, 75, 75, 70, 80, 70, 75, 75, 75, 75, 75, 75

👸 الريط مع الحياة

إرشادات للدراسة

المتوسط للمجتمع عندما بكون المتوسط للمجتمع μ معلومًا، يمكنه

أن يحلّ مكان المتوسط

إرشادات للدراسة

المعياري للعينة

المتوسط والانحراف

إذا قارن المعلم صالح درجات

طلابه بدرجات طلاب آخرين

في اختبار وطني مثلًا، فإن

درجات طلابه تُعدُّ عينةً من

يحسب \overline{x} ، \overline{s} في هذه الحالة.

درجات كل الطلاب الذين تقدموا للاختبار، وعليه أن

. \overline{x} للعينة

يستعمل المعلمون الأنواع المختلفة من الأسئلة الموضوعية والمقالية لتقدير درجات طلابهم.

100, 100, 90, 10, 100, 95, 10, 95, 100, 100, 85, 15, 95, 20, 95, 90, 100, 100, 90, 10, 100, 100, 25

a) بيِّن ما إذا كانت هذه البيانات تمثل عينة أم مجتمعًا، ثم أوجد الانحراف المعياري لدرجات الاختبار A. الخطوة 1 بما أن المتوسط 75 للاختبار كاملًا ، فهو يمثل متوسط المجتمع. ومن هنا فإن: $. \mu = 75$

الخطوة 2 أوجد الانحراف المعياري.

 $\sigma = \sqrt{\frac{\sum_{k=1}^{n} (x_k - \mu)^2}{\sum_{k=1}^{n} (x_k - \mu)^2}}$ قانون الانحراف المعياري

$$=\sqrt{\frac{(85-75)^2+(80-75)^2+\ldots+(75-75)^2+(75-75)^2}{23}}$$

≈ 3.9

المتوسط لدرجات الاختبار A يساوي 75، والانحراف المعياري يساوي تقريبًا 3.9

b) استعمل الحاسبة البيانية؛ لإيجاد الانحراف المعياري للاختبار B. اضغط 🚳 ثم 📑 وأدخل القيم (الدرجات) في العمود A.

المتوسط لدرجات الاختبار B يساوى 75 والانحراف المعياري يساوي تقريبًا 36

c) قارن الانحراف المعياري في كلا الاختبارين. وماذا تستنتج؟

الانحراف المعياري للاختبار B أكبر كثيرًا من الانحراف المعياري للاختبار A؛ لذا فدرجات الطلاب في الاختبار A أكثر تجانسًا، أي أن درجات بعضهم قريبة من بعض، مقارنةً بالاختبار B الذي يبيِّن درجات عالية جدًّا، ودرجات لآخرين دون المتوسط كثيرًا.

🔽 تحقق من فهمك

- 3A) احسب المتوسط والانحراف المعياري للمجتمع للبيانات المحدّدة في الجدول المجاور.
- **3B)** ضع 70 مكان 30 في الجدول المجاور. ماذا تتوقع أن يحدث لكلِّ من المتوسط والانحراف المعياري؟ أعد الحسابات للتحقّق.
- 28 **3C)** اختير (5) طلاب عشوائيًّا من فصل دراسي، وقيست أطوالهم فكانت:175 سم، 170 سم، 168 سم، 167سم، 170 سم. بيِّن ما إذا كانت هذه البيانات تمثّل عينة أم مجتمعًا، ثم أوجد الانحراف المعياري لأطوال وزارة التعليم هؤ لاء الطلاب.

Ministry of Education

33

28

33

29 30

2021 - 1443

31 36 34 29

تدرب وحل المسائل

أي مقاييس النزعة المركزية يصف بصورة أفضل البيانات الآتية؟ ولماذا؟ (مثال 1)

- 833, 796, 781, 776, 758 (1
 - 37.2, 36.8, 40.4, 19.2 (2
- 65, 70, 17, 60, 55, 65, 63, 58, 60, 69 **(3**
 - 53, 61, 46, 59, 61, 55, 49 (4)
- 5) تغذية: يوضح الجدول أدناه عدد السعرات لكل طبق خضار.

السعرات	الخضار	السعرات	الخضار	السعرات	الخضار
14	باذنجان	25	بركلي	10	زهرة
30	فاصوليا	17	ملفوف	17	بندورة
20	فلضل	28	جزر	66	حبوب
9	خس	9	سبانخ	17	كوسا

6) طقس: يبيّن الجدول أدناه، درجات الحرارة في أثناء النهار ولمدة أسبوع بالدرجات الفهرنهايتية:

درجة الحرارة	اليوم
64°F	السبت
73°F	الأحد
69°F	الإثنين
70°F	الثلاثاء
71°F	الأربعاء
75°F	الخميس
74°F	الجمعة

- 7) ألعاب أولمبية: في دراسة مسحية عشوائية شملت 5824 شخصًا، أفاد %29 منهم أنهم سيشاهدون الألعاب الأولمبية على التلفاز. (مثال 2)
 - a) ما هامش خطأ المعاينة ؟
 - لفترة الممكنة التي تتضمن نسبة المجتمع الذين سوف يشاهدون الألعاب الأولمبية على التلفاز ؟
- 8) رياضة: في دراسة مسحية عشوائية شارك فيها 5669 شخصًا، وجد أن %31 منهم يشاهدون مباراة واحدة على الأقل في كرة القدم شهريًا.
 - a) ما هامش خطأ المعاينة ؟
 - له ما الفترة الممكنة التي تتضمن نسبة المجتمع الذين يشاهدون مباراة واحدة على الأقل في كرة القدم شهريًا؟

- **9) تمارين رياضية:** في دراسة مسحية شملت 4213 شخصًا اختيروا بطريقة عشوائية، أفاد %78 منهم أنهم يمارسون الرياضة لمدة ساعة أسبو عيًّا على الأقل.
 - a ما هامش خطأ المعاينة؟
 - **(b)** ما الفترة الممكنة التي تحتوي على نسبة المجتمع الذين يمارسون الرياضة ساعة واحدة على الأقل أسبو عيًّا؟
- 10) قيادة: تُحدّد عادة السرعات القصوى على الطرقات تفاديًا للحوادث.
- (a) فيما يأتي السرعات القصوى (mi/h) للطرقات جميعها في إحدى الدول بين مدنها وقراها. بيِّن ما إذا كانت هذه البيانات تمثِّل عينة أم مجتمعًا، ثم أوجد الانحراف المعياري للسرعات في الجدول أدناه. (مثال 3)

	(m	i/h) ų	جميعو	رقات	ي للط	القصو	رعات	السا	
70	70	65	65	75	70	70	75	65	70

- (mi/h) إذا كان الانحراف المعياري للسرعات القصوى (mi/h) للطرقات جميعها في دولة أخرى (24). قارن الانحراف المعياري للسرعات في كلا الدولتين. وماذا تستنتج؟
- 11) تدريب: في أثناء التمرين سجَّل سلطان الأزمنة التي ركض فيها مسافة m 40. بيِّن ما إذا كانت هذه البيانات تمثِّل عينة أم مجتمعًا، ثم أوجد الانحراف المعياري للبيانات في الجدول أدناه. 12) اختبارات: فيما يأتي درجات صف مكوّن من 10 طلاب في اختبار من 25 درجة.

درجات 10 طلابِ في اختبار من 25 درجة									
20	17	21	22	20	21	20	21	21	23

- a) قارن بين المتوسط والوسيط للدرجات.
- أوجد الانحراف المعياري للبيانات، وقرّبه إلى أقرب جزء من.
- على افتراض أن الدرجة 20 كانت خطأً، وتم تعديلها إلى 25،
 كيف يتأثّر كلٌ من المتوسط والوسيط بهذا التغيير؟

13) **مدارس:** يوضّح الجدول أدناه عدد الطلاب لكل معلم في مدارس إحدى المناطق التعليمية:

عدد الطلاب لكل معلم							
27	22	26	26	25			
24	25	28	22	24			
24	26	24	22	20			
27	23	22	29	23			
24	24	26	29	28			
28	29	25	25	23			

- a) ما مقياس النزعة المركزية الأنسب لهذه البيانات؟ ولماذا؟
- b بيِّن ما إذا كانت هذه البيانات تمثِّل عينة أم مجتمعًا، ثم أوجد الانحراف المعياري للبيانات، علمًا بأن المتوسط الحسابي لها يساوى 25، وقرِّبه إلى أقرب جزء من مئة.

مسائل مهارات التفكير العليا

- 14) **مسألة مفتوحة:** اجمع بيانات في متغيّر واحد، ثم صف مقاييس النزعة المركزية ومقاييس التشتت المناسبة لهذه البيانات.
- 15) تحدِّ: إذا أيَّد %67 من المستهدفين موضوع دراسة مسحية، وكانت الفترة الممكنة التي تتضمن نسبة أفراد المجتمع المؤيدة هي %69.2 64.8 فكم شخصًا تناولت الدراسة المسحية رأيهم؟
- 16) تبرير: حذفت قيمة متطرفة كبيرة من مجموعة بيانات، كيف يؤثّر ذلك في المتوسط والانحراف المعياري لمجموعة البيانات؟ وضّح ذلك.
- 17) تبرير: إذا زيدت كل قيمة في مجموعة بيانات بمقدار 10، فكيف يؤثّر ذلك في المتوسط والوسيط والانحراف المعياري؟ فسّر إجابتك.
 - 18) اكتب: قارن بذكر أوجه الشبه وأوجه الاختلاف بين المتوسط والوسيط لمجموعة بيانات في متغيّر واحد.

مراجعة تراكمية

حدِّد إذا كانت كل دراسة مسحية مما يأتي تتبنى عينة متحيزة أو غير متحيزة، وفسر إجابتك. (الدرس 1-3)

- 19) قام باحث بإرسال استبانة إلى كل شخص تنتهي بطاقة الهوية الخاصة به برقم معين.
 - 20) إيجاد أطوال أعضاء فريق كرة السلة لتحديد المتوسط الحسابي لأطوال طلاب المدرسة.

- أوجد الضرب الداخلي للمتجهين \mathbf{u} , \mathbf{v} في كل مما يأتي، ثم حدِّد ما إذا كانا متعامدين أو لا. (المدرس 5-1)
 - $\textbf{u}=\langle 1,3,5\rangle, \textbf{v}=\langle -8,1,1\rangle$ (21
 - $u = \langle -2, 4, 6 \rangle, v = \langle 2, 3, 4 \rangle$ (22)
 - $\mathbf{u} = \langle 3, 4, 5 \rangle, \mathbf{v} = \langle -1, -3, -5 \rangle$ (23)
 - u = 8i 8j + 3k, v = 2i + 4j + 6k (24)

أوجد زوجين مختلفين كل منهما يمثِّل إحداثيين قطبيين لكل نقطة معطاة بالإحداثيّات الديكارتيّة في كلِّ مما يأتي: (الدرس 2-2)

- (6, 11) **(25**
- (-9, 2) (26)
 - (3, 1) **(27**

تدريب على اختبار

- 28) إحصاء: في مجموعة من تسعة أعداد مختلفة، أي ممّا يأتي لا يؤثّر في الوسيط؟ A مضاعفة كل عدد B زيادة كل عدد بمقدار 10
 - C زيادة القيمة الصغرى فقط (يادة القيمة الكبرى فقط
- 29) درجات اختبار: كانت درجات 5 طلاب اختيروا عشوائيًّا في فصل دراسي كما يلي 55, 45, 50, 50, بيِّن ما إذا كانت هذه البيانات تمثُّل عينة أم مجتمعًا، ثم احسب الانحراف المعياري لدرجاتهم إلى أقرب عدد صحيح.
 - 15 **B** 40 **A**
 - 13 **D** 14 **C**

2021 - 1443

الاحتمال المشروط

Conditional Probability

المادا (9

يختبر هيثم دواءً يقى من بعض الأمراض. وتوجد مجموعتان من الأشخاص إحداهما تجريبية تم إعطاء الدواء الحقيقي لأفرادها، بينما تمّ إعطاء دواء شكلي (غير فعّال) للمجموعة الأخرى (المجموعة الضابطة). وبعد الحصول على النتائج، يريد هيثم أن يجد احتمال بقاء المستهدفين أصحاء نتيجة الدواء.

مفهوم أساسي

وهذا المثال يُفسّر مفهوم الاحتمال المشروط.

الاحتمال المشروط يُسمّى احتمال وقوع الحادثة B بشرط وقوع الحادثة A، احتمالًا مشروطًا. ويرمز له بالرمز م ويقرأ احتمال وقوع الحادثة B بشرط وقوع الحادثة A .

رفيما رسناقء

درست مفهوم الاحتمال وكيفية حسابه. (مهارة سابقة)

- أجد احتمال وقوع حادثة إذا عُلم أن حادثة أخرى قد
- أستعمل الجداول التوافقية لإيجاد احتمالات مشروطة.

المضردات

الاحتمال المشروط conditional probability الجدول التوافقي contingency table التكرار النسبي relative frequency

الاحتمال المشروط

A إذا كانت A , B حادثتين غير مستقلتين، فإن الاحتمال المشروط لوقوع الحادثة B، إذا عُلم أن الحادثة قد وقعت يعرّف على النحو:

$$P(B \mid A) = \frac{P(A \circ B)}{P(A)}, P(A) \neq 0$$

الاحتمال المشروط مـثال 1

ألقت عبير مكعب أرقام مرةً واحدةً. ما احتمال ظهور العدد 3، علمًا بأن العدد الظاهر فردى؟ توجد 6 نواتج ممكنة من إلقاء مكعب الأرقام مرةً واحدةً.

> لتكن A الحادثة التي يكون فيها العدد الظاهر عددًا فرديًّا. ولتكن B الحادثة التي يظهر فيها العدد 3.

 $P(A) = \frac{3}{6} = \frac{1}{2}$ 3 نواتج ذات عدد فردي من بين 6 نواتج

 $P(A \cap B) = \frac{1}{6}$ واحد من النواتج الستة فردي ويُمثّل العدد 3

 $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$ احتمال وقوع الحادثة B علمًا بأن الحادثة A قد وقعت

> $P(A) = \frac{1}{2}, P(A \cap B) = \frac{1}{6}$ $=\frac{1}{6} \div \frac{1}{2} = \frac{1}{3}$

احتمال ظهور العدد 3 علمًا بأن العدد الظاهر فردي هو $\frac{1}{2}$.

🚺 تحقق من فهمك

1) يحتوي كيس على 52 بطاقة مقسمة إلى أربع مجموعات لكل منها لون من الألوان الآتية: الأحمر والأخضر والأزرّق والأصفر، ورقّمت بطاقات كل لون بالأعداد من 1 إلى 13. إذا سحبت نوال بطاقة، فما احتمال أن تحمل هذه البطاقة العدد 13 علمًا بأن ما سحبته كان العدد 11 أو 12 أو 13؟ وزارة التعليم

الجداول التوافقية الجداول التوافقية هي جداول تكرارية ذات بعدين، يتم فيها تسجيل بيانات ضمن خلايا، حيث إن كل خلية من خلايا الجدول تُمثّل تكرارًا يسمى تكرارًا نسبيًّا، إذ يكون منسوبًا إلى مجموع التكرارات في الجدول، أو منسوبًا إلى مجموع التكرارات في العمود الذي تقع فيه الخلية، أو منسوبًا إلى مجموع التكرارات في العمود الذي تقع فيه الخلية، ويمكن استعمال الجداول التوافقية في إيجاد الاحتمال المشروط.

الحالة

الجداول التوافقية

🥡 مثال 2 من واقع الحياة

مشي: أوجد احتمال أن يكون شخص اختير عشوائيًا معافى، علمًا بأنه يمارس المشى.

مشي: أوجد احتمال أن يكون شادات للدراسة اختد عشمائنًا معافى علمًا بأنه بـ

حل مختصر

يمكن اختصار الحل في المثال 2 باستعمال الجداول التوافقية وفضاء العينة المختصر على النحو الآتي: احتمال أن يكون الشخص معافى بشرط أنه يمارس المشي هو

$$P(H \mid W) = \frac{800}{2400} = \frac{1}{3}$$

لا يمارس المشي (Nw)	يمارس المشي (w)	
1200	1600	مریض(S)
400	800	معافی(H)

عدد الأشخاص

عدد الأشخاص الكلي في الدراسة 400 + 400 + 1200 + 800 + 1200 ويساوي 4000 شخص، ويراد إيجاد احتمال H علمًا بأن W قد وقع.

$$P(H \mid W) = \frac{P(H \circ W)}{P(W)}$$

$$P(H \mid W) = \frac{800}{4000}, P(W) = \frac{1600 + 800}{4000}$$

$$= \frac{800}{4000} \div \frac{2400}{4000}$$

$$= \frac{800}{2400} = \frac{1}{3}$$

. $\frac{1}{3}$ عمل أن يكون الشخص معافى، بشرط أنه يمارس المشي هو

🗹 تحقق من فهمك

2) أوجد احتمال أن يكون شخص اختير عشوائيًا معافى، علمًا بأنه لا يمارس المشى.

يمكن استعمال الجداول التوافقية لتمثيل أي عدد من الحالات الممكنة.

مثال 3 على اختبار

إرشادات للدراسة -

كتابة الاحتمال

تذكر أن الاحتمال يُعبَّر عنه بكسر اعتيادي أو بكسر عشري أو بنسبة مئوية.

يوضّح الجدول أدناه عدد الطلاب الجامعيين الذين يمارسون الرياضة بشكل منتظم، إذا اختير طالب عشوائيًا، فأوجد احتمال أن يكون الطالب من ضمن المنتخب الجامعي، علمًا بأنه في السنة الثالثة.

سنةرابعة	سنةثالثة	سنة ثانية	سنة أولى	الرياضيون الجامعيون
51	36	22	7	ضمن المنتخب الجامعي(K)
257	276	262	269	ليس ضمن المنتخب الحامعي(S)

%16.6 تقريبًا	В
13.0% تقريبًا	C

11.5% تقربىًا **A**

اقرأ فقرة الاختبار

تريد معرفة احتمال أن يكون الطالب من ضمن المنتخب الجامعي (K) علمًا بأنه في السنة الثالثة (T). مجموع الطلاب هو 1180 طالبًا.

حُلّ فقرة الاختبار

قانون الاحتمال المشروط
$$P(K \mid T) = \frac{P(K \cap T)}{P(T)}$$

$$P(K \cap T) = \frac{36}{1180}, P(T) = \frac{36 + 276}{1180}$$

$$= \frac{36}{1180} \div \frac{312}{1180}$$

$$\sim 0.115\% \approx 11.5\%$$
 الجواب الصحيح A

🗹 تحقق من فهمك

قوجد احتمال أن يكون الطالب من ضمن المنتخب الجامعي، علمًا بأنه في السنة الأولى.

مراه المساهم ا ما مساهم المساهم المس

وزارة التعليم

8.4% **C** تقريبًا

2.5% **ت**قريبًا

A %2.6 تقريبًا

تدرب وحل المسائل

یحتوی کیس علی 8 کرات زرقاء، و 6 کرات حمراء، و 10 کرات صفراء، و 6 کرات بیضاء، و 5 کرات خضراء. إذا سُحبت کرة واحدة عشوائیًّا، فأوجد الاحتمال فی کل حالة مما یأتی: (مثال 1)

- 1) أن تكون الكرة خضراء، إذا عُلم أنها ليست زرقاء.
 - 2) أن تكون حمراء، إذا عُلم أنها ليست خضراء.
- 3) أن تكون صفراء، إذا عُلم أنها ليست حمراء وليست زرقاء.
 - 4) أن تكون خضراء أو بيضاء، إذا عُلم أنها ليست حمراء.
 - 5) أن تكون زرقاء، إذا عُلم أنها بيضاء.
- 6) قطاعات دائرية: رقمّت قطاعات دائرية متطابقة في قرص من 1 إلى 8، إذا أُدير مؤشر القرص، فما احتمال أن يستقر المؤشر عند العدد 8 إذا عُلِم أنه استقر عند عند زوجى؟
- 7) فحص القيادة: يوضّح الجدول أدناه أداء مجموعة من الأشخاص في فحص القيادة، علمًا بأن بعضهم أخذ حصصًا تدريبية تحضيرًا للفحص، والبعض الآخر لم يأخذ. إذا اختير أحد الأشخاص عشوائيًّا، فأوجد احتمال كل مما يأتى: (مثال 2)

لم يأخذ حصصًا	أخذ حصصًا	
48	64	ناجح
32	18	راسب

- a الشخص ناجح علمًا بأنه أخذ حصصًا.
- b) الشخص راسب علمًا بأنه لم يأخذ حصصًا.
 - c) لم يأخذ حصصًا، علمًا بأنه ناجح.
- 8) دروس التقوية: سجّلت مدرسة أعداد طلاب الصفين الثاني المتوسط والثالث المتوسط المشتركين وغير المشتركين في دروس التقوية. إذا اختير أحد الطلاب عشوائيًّا، فأوجد احتمال كل ممّا يأتي:

غير مشارك	مشارك	
242	156	الثاني المتوسط
108	312	الثالث المتوسط

- a) الطالب مشارك في التقوية علمًا بأنه في الصف الثاني المتوسط.
 - b) الطالب غير مشارك في التقوية علمًا بأنه في الصف الثالث المتوسط.
 - c الطالب في الصف الثاني المتوسط علمًا بأنه غير مشارك.

و) اختيار من متعدد: يُبين الجدول أدناه أعداد الطلاب الذين حضروا مباراة كرة قدم، والذين تغيّبوا عنها من السنوات الجامعية الأولى والثانية والثالثة والرابعة. إذا اختير أحد الطلاب عشوائيًّا، فأوجد احتمال أن يكون قد حضر المباراة علمًا بأنه من السنة الثالثة. (مثال 3)

رابعة	ثائثة	ثانية	أولى	
254	224	90	48	الحضور
8	36	141	182	الغياب

- 48.6% **A** تقريبًا
- 77.6% **B** تقريبًا
- 86.2% **C** تقريبًا
- 91.6% **D** تقريبًا
- 10) اختيار من متعدد: يقارن عادل وإبراهيم وسعود مجموعة أمثال شعبية جمعوها. وتم تمثيل ذلك وفق الجدول أدناه . إذا اختير مثل شعبي مما جمعوه عشوائيًّا، فأوجد احتمال أن يكون المثل اجتماعيًّا، علمًا بأنه ليس مما جمعه عادل.

خليط	اجتماعي	فكاهي	
44	316	521	عادل
302	145	119	إبراهيم
182	4	244	سعود

- 35.9% **A** تقريبًا
- **2**4.8% تقريبًا
- 17.2% **C** تقريبًا
 - 15% **D** تقریبًا

إذا ألقيت أربع قطع نقد متمايزة مرةً واحدة، فأجب عمّا يأتي :

- 11) ما احتمال ظهور شعارين، علمًا بوجود كتابة على قطعة واحدة على الأقل؟
- 12) ما احتمال ظهور 3 كتابات علمًا بوجود شعار واحد على الأقل؟
 - 13) ما احتمال عدم ظهور أي شعار علمًا بأنه توجد كتابة واحدة على الأقل؟
- 14) ما احتمال عدم ظهور أي كتابة علمًا بأنه يوجد 3 شعارات على الأقل؟

Ministry of Education 2021 - 1443

- 15) بطاقات: يحتوي صندوق على 52 بطاقة مقسَّمة إلى أربع مجموعات لكل منها لون من الألوان الآتية: الأحمر، والأسود، والأخضر، والأزرق، ورُقِّمت بطاقات كل لون من 1 إلى 13. إذا شُحبت بطاقة واحدة عشوائيًّا، فما احتمال أن تحمل البطاقة الرقم 9 علمًا بأنها حمراء اللون؟
- 16) يبين الجدول أدناه أعداد الألعاب الإلكترونية الموجودة لدى شخص. إذا اختيرت لعبة عشوائيًّا فأوجد كلًّا من الاحتمالين الآتيين:

العدد	اللعبة
5	كرة قدم
2	كرة سلة
6	مصارعة
4	سباق سيارات
3	أخرى

- a) أن تكون من ألعاب المصارعة علمًا بأنها ليست من ألعاب كرة القدم.
- **(b)** أن تكون من ألعاب سباق السيارات علمًا بأنها ليست من ألعاب كرة السلة وليست من ألعاب المصارعة.

مسائل مهارات التفكير العليا

- 17) تحدُّ: ألقي مكعب مرقم من 1 إلى 6 خمس مرات متتالية. ما احتمال ظهور الرقم 2 في الرميات الخمس علمًا بأن الرقم 2 ظهر في الرميات الثلاث الأولى؟
- 18) اكتب: فسّر الاختلاف بين الاحتمال المشروط لحوادث غير مستقلة، والاحتمال المشروط لحوادث مستقلة. أعطِ مثالًا لكل نوع.
- 19) تبرير: إذا مُثِّل احتمال حادثة مركبة من حادثتين بالرسم الشجري (شجرة الاحتمال)، فأي فروع الرسم الشجري يمثَّل الاحتمال المشروط. أعط مثالًا لموقف يمكن تمثيله بشجرة احتمال ثم مثَّله.
- 20) تبرير: إذا رُميت قطعة نقد بشكل حر 21 مرة متتالية، فما احتمال أن تظهر الصورة في الرمية 21، إذا علمت أن الصورة ظهرت في الرميات العشرين الأولى؟ وضِّح تبريرك.
- **21) مسألة مفتوحة:** كوِّن جدولًا توافقيًّا، واحسب احتمالًا مشروطًا يرتبط بالجدول.

مراجعة تراكمية

- استعمل مسطرة ومنقلة، لرسم متجه يمثّل ${\bf v}=20\,{\rm km/h}$ ، باتجاه ${\bf c}={\bf v}$ ، باتجاه ${\bf c}={\bf v}$ ، مع الأفقى. (الدرس 1-1)
- 23) ثقافة مائية: يوضّح الجدول أدناه دخل 12 شركة في الأسبوع الأول من شهر محرم عام 1439هـ بالريال. (الدرس 3-2)

	لدخل لكل شركة بالرياز	
25778	25698	25200
23858	25580	27828
29173	22861	32903
27870	27124	23995

- a) أوجد كلًّا من المتوسط الحسابي والوسيط.
- b بيِّن ما إذا كانت هذه البيانات تمثل عينة أم مجتمعًا، ثم أوجد الانحراف المعياري للبيانات وقرّبه إلى أقرب جزءٍ من مئة.
- لنفترض أن تقريرًا عن الشركات المذكورة ذكر أن القيمة
 22861 ريالًا كانت خطأً، وهي في الحقيقة 24861. فكيف يتأثّر
 كل من المتوسط والوسيط بهذا التعديل؟

حدّد ما إذا كانت كل دراسة مسحية مما يأتي، تتبنى عينة متحيزة، أو غير متحيزة. وفسّر إجابتك. (الدرس 1-3)

- 24) دراسة مسحية تتناول موظفي مطعم، لتقرر أكثر الأطباق شعبية.
- 25) دراسة مسحية تتناول رأي مرتادي مكاتب البريد، لمعرفة أكثر ألوان السيارات شيوعًا.

تدريب على اختبار

- وذا كانت A , B حادثتين في فضاء العينة لتجربة عشوائية ما، P(A)=0.2 , P(B)=0.5 , $P(A\cup B)=0.4$ نحيث كان $P(A\mid B)$ فما قيمة $P(A\mid B)$ فما قيمة وكان $P(A\mid B)$
 - 0.5 **A**
 - 0.6 **B**
 - 0.7 C
 - 0.8 **D**
- 27) سحبت كرة بشكل عشوائي من كيس يحتوي على كرتين حمراوين و3 زرقاء دون إرجاع وكانت زرقاء. ما احتمال سحب كرة زرقاء ثانية؟

Ministry of Education 2021 - 1443

100 الفصل 3 الاحتمال والإحصاء

حدد ما إذا كانت كل دراسة مسحية فيما يأتي تتبنى عينة متحيزة أو غير متحيزة، وفسّر إجابتك. (الدرس 3-1)

- يتم اختيار كل ثاني شخص يخرج من مجمع تجاري يبيع بالجملة؛
 لمعرفة عدد الأطفال في الأُسَر في تلك المدينة.
- 2) يتم اختيار كل عاشر موظف يخرج من شركة؛ لمعرفة رأي الموظفين في عملهم.
 - **3)** سؤال كل خامس طالب يدخل المدرسة عن مواصفات المعلم المثالي.
 - 4) اختيار من متعدد: حدّد أيًّا من العبارات الآتية توضح السببية:
 (الدرس 1-3)
 - A إذا تدرّبت كل يوم، فستصبح لاعبًا محترفًا في كرة السلة.
 - B إذا قرأت كتابك المقرر، فستنجح في الاختبار.
 - **2** إذا تقدّمت لعشر وظائف مختلفة، فستتلقى عرضًا من واحدة على الأقل.
- إذا وقفت بالخارج تحت المطر من دون مظلة، فستبتل. حدد ما إذا كانت كل من الحالتين الآتيتين تمثّل دراسة تجريبية أو دراسة قائمة على الملاحظة. وإذا كانت دراسة تجريبية، فحدد المجموعة التجريبية والمجموعة الضابطة. (الدرس 1-3)
- اختر 250 طالبًا في المرحلة المتوسطة نصفهم من المدارس الأهلية، وقارن بين عاداتهم الدراسية.
 - خُصِّص لنصف الموظفين الذين اختيروا بطريقة عشوائية ساعة لتناول الغداء، وقارن اتجاهاتهم نحو العمل مع بقية زملائهم.
 - أي مقاييس النزعة المركزية تصف بصورة أفضل البيانات الآتية؟
 ولماذا؟ (الدرس 2-3)

	عدد سنوات الخبرة							
2	1	4	2	3	2	2		
1	2	4	3	1	3	2		
4	1	3	2	3	2	3		
0	1	1	1	4	3	2		
3	2	2	2	1	2	1		

8) يحاول باحث أن يحدد أثر إضاءة نوع جديد من المصابيح الكهربائية على أزهار للزينة المنزلية، حيث قام بتعريض مجموعة من الأزهار لإضاءة المصابيح الجديدة، ومجموعة أخرى لإضاءة المصابيح العادية. ويبين الجدول أدناه أعداد الأزهار التي عاشت أو ماتت في المجموعتين.

إضاءة عادية	إضاءة جديدة	
17	24	عاشت
13	6	ماتت

إذا اختيرت زهرة منها عشوائيًّا، فما احتمال: (الدرس 3-3)

- a) أن تكون من الأزهار التي تعرضت لإضاءة المصابيح الجديدة علمًا بأنها عاشت؟
- b) أن تكون من الأزهار التي عاشت علمًا بأنها تعرضت لإضاءة المصابيح العادية؟

إذا ألقي مكعب مرقَّم من 1 إلى 6 مرة واحدة، فما احتمال كل مما يأتي: (الدرس 3-3)

- 9) ظهور عدد فردي علمًا بأن العدد الظاهر أكبر من 3.
 - 10) ظهور العدد 4 علمًا بأن العدد الظاهر كان زوجًّا.
- (11) اختيار من متعدد: في القرص ذي المؤشر الدوار المقسم إلى (16) قطاعًا متطابقًا، ومرقمة بالأعداد 16-1، ما احتمال استقرار المؤشر على عدد فردي، إذا علم أنه استقر على عدد أكبر من 23 (الدرس 3-3)
 - $\frac{13}{16}$ A
 - $\frac{8}{16}$ **B**
 - $\frac{8}{13}$ C
 - $\frac{6}{13}$ **D**

مرارة التعليم Ministry of Education 2021 - 1443

الاحتمال والتوزيعات الاحتمالية

Probability and Probability Distributions

درست إيجاد احتمال وقوع حادثة إذا علم أن حادثة أخرى قد وقعت. (الدرس3-3)

رفيونا رسياق:

- أجد الاحتمالات باستعمال التباديل والتوافيق.
- أجد الاحتمالات باستعمال المتغيرات العشوائية.
 - أمثل بيانيًا التوزيعات الاحتمالية وأستعملها.

المفردات.

النجاح

success

الفشل

failure

المتغير العشوائي

random variable

المتغير العشوائي المنفصل discrete random variable

التوزيع الاحتمالي

probability distribution

التوزيع الاحتمالي المنفصل

discrete probability distribution

الاحتمال النظري

theoretical probability

الاحتمال التجريبي

experimental probability

القيمة المتوقعة expected value

تنبيها

احتمال النجاح والفشل

لاحظ أن الحرف الصغير S يدل على عدد مرات النجاح

في وقوع حادثة، بينما الحرف

النجاح، وكذلك الأمر بالنسبة

الكبير S يدل على حادثة

 \mathbf{F} و \mathbf{f} للحرفين

افترض أن شركة لديها 4 شواغر، وتشترط لتعيين الموظفين لديها اجتيازهم لمقابلة شخصية. إذا تقدم للشركة 8 أشخاص من المنطقة A، و 10 أشخاص من المنطقة B، وتمت مقابلة المتقدمين، واختير 4 منهم بشكل عشوائي، فما احتمال أن يفوز بالوظائف 8 أشخاص من المنطقة A وشخص واحد من المنطقة B?

الاحتمال تسمى النسبة التي تقيس فرصة وقوع حادثة معيَّنة احتمالًا. ووقوع الشيء المرغوب فيه يُسمّى نجاحًا، وعدم وقوعه يُسمّى فضاء العينة. وكلما اقترب احتمال وقوع حادثة من 1، كانت فرصة أو إمكانية وقوعها أكبر.

احتمال النجاح والفشل

إذا كان عدد مرات نجاح وقوع حادثة S من المرات، وعدد مرات فشل وقوع الحادثة نفسها f من المرات، فإن احتمال النجاح يُكتب على النحو P(S)، كما يُكتب احتمال الفشل على النحو P(F). ويُعطى كل من احتمال النجاح واحتمال الفشل بالصيغتين الآتيتين:

$$P(S) = \frac{s}{s+f} \quad , \quad P(F) = \frac{f}{s+f}$$

مفهوم أساسي

 $P(s) = \frac{s}{s+f}$ الحادثة $P(s) = \frac{s}{s+f}$ الحادثة الحادثة الحادثة الممكنة

الاحتمال باستعمال التوافيق مـثال 1

رشّحت مدرسة 12 طالبًا من الصف الثاني الثانوي، و 16 طالبًا من الصف الأول الثانوي للتنافس على 6 جوائز؛ نظرًا لتفوقهم الدراسي. إذا تمت مقابلة المرشحين، واختير 6 منهم بشكل عشوائي، فما احتمال أن يفوز بالجوائز 3 طلاب من الصف الأول الثانوي و 3 طلاب من الصف الثاني الثانوي؟

الخطوة 1 حدّد عدد مرات النجاح ٤

عدد طرق اختيار 3 طلاب من الصف الثاني هو

عدد طرق اختيار 3 طلاب من الصف الأول هو

استعمل التوافيق، ومبدأ العد الأساسي لإيجاد عدد النجاحات s.

$$S = {}_{12}C_3 \cdot {}_{16}C_3 = \frac{12!}{9! \ 3!} \cdot \frac{16!}{13! \ 3!} = 123200$$

s + f، (عدد عناصر فضاء العينة)، s + f د حدّد عدد النواتج الممكنة (عدد عناصر فضاء العينة)،

$$s + f = {}_{28}C_6 = \frac{28!}{22! \ 6!} = 376740$$

الخطوة 3 أوجد الاحتمال

P(فوز 3 من الأول و 3 من الثاني) = $\frac{s}{s+f}$ احتمال النجاح

 $=\frac{123200}{376740}$

s = 123200, s + f = 376740

 ≈ 0.327016 استعمل الآلة الحاسبة

وزارة التعليم Ministry of Education 2021 - 1443

احتمال فوز 3 طلاب من الصف الأول و3 من الصف الثاني هو تقريبًا 0.33 أو 33%.

🗹 تحقق من فهمك

1) في المثال 1 إذا كان عدد الذين رُشِّحوا من الصف الثاني الثانوي 3، ومن الصف الأول الثانوي 11، وكان عدد الجوائز 4، واختير 4 طلاب من الذين رُشِّحوا بطريقة عشوائية، فما احتمال أن يفوز طالبان من الصف الأول؟ الثاني وطالبان من الصف الأول؟

مراجعة المفردات

عند اختيار مجموعة من الأشخاص أو الأشياء بترتيب معيّن، فإن الاختيار يُسمّى

تبديلًا، وعندما لا نهتم بعملية ترتيب الأشخاص أو

الأشياء، فإن الاختيار يُسمّى

التباديل والتوافيق

🦚 مثال 2 من واقع الحياة

الاحتمال باستعمال التباديل

لدى صالح 6 أصدقاء تبدأ أسماؤهم بالأحرف A , B , C , D , E , F ، ويتوقع من كل منهم اتصالًا هاتفيًّا للاتفاق على موعد رحلة ينوون القيام بها. ما احتمال أن يتصل A أولًا ثم B ثانيًا، ويتصل كل من D , E , F أخيرًا.

الخطوة 1 حدِّد عدد مرات النجاح s.

1 عدد طرق اتصال A أولًا ثم B ثانيًا هو $_3P_3$ عدد طرق اتصال كل من D , E , F في الأخير هو $_3P_3$ استعمل التباديل ومبدأ العد الأساسي لإيجاد $_3P_3=1\cdot _3P_3=1\cdot _3P_3=1$

الخطوة 2 أو جد عدد النواتج الممكنة (عدد عناصر فضاء العينة)، f+S+1

. وتمثل عدد الترتيبات الممكنة لاتصالات الأصدقاء الستة. $S+f={}_6P_6=6!=720$

الخطوة 3 أوجد الاحتمال.

احتمال النجاح $P(S)=rac{S}{S+f}$ S=6 , S+f=720 $S=rac{6}{720}$ pprox 0.0083

الاحتمال المطلوب هو تقريبًا 0.008 أو %0.8 تقريبًا.

🔽 تحقق من فهمك

2) سباق: اشترك صلاح، وعبد اللَّه، وسليم في سباق 400 m مع خمسة رياضيين آخرين. ما احتمال أن ينهي هؤ لاء الثلاثة السباق في المراكز الثلاثة الأولى؟

المتغير العشوائي والتوزيع الاحتمالي يُسمى المتغير الذي يأخذ مجموعة قيم لها احتمالات معلومة متغيرًا عشوائيًا. والمتغير العشوائي الذي له عدد محدود من القيم يُسمى متغيرًا عشوائيًا منفصلاً.

التوزيع الاحتمالي هو دالة تربط بين كل قيمة من قيم المتغير العشوائي، مع احتمال وقوعها، ويعبر عنه بجدول أو معادلة، أو تمثيل بياني. ويجب أن يحقق التوزيع الاحتمالي الشرطين الآتيين:

- . $0 \le P(X) \le 1$ أي أن $1 \le P(X) \le 1$ محصور بين 0 و 1، أي أن $1 \le P(X) \le 1$
 - . $\sum P(X) = 1$ أي أن 1 مجموع كل احتمالات قيم X يساوي 1 ، أي أن 1

والتوزيع الاحتمالي المنفصل هو توزيع احتمالي متغيره العشوائي منفصل.

فعند رمي قطعتي نقد متمايزتين مرَّةً واحدة، فإن فضاء العينة هو {TT, TL, LT, LL} ، حيث يُمثَّل L الوجه الذي يحمل الشعار، و T الوجه الذي يحمل الشعار، و T الوجه الذي يحمل الكتابة، إذا كان X متغيرًا عشوائيًّا يدل على عدد مرات ظهور الشعار، فإن X يأخذ القيم 2, 1, 2 . ويمكنك حساب الاحتمال النظري لعدم الحصول على شعار، أو الحصول على شعار واحد، أو الحصول على شعارين، ثم تكوين جدول يمثّل التوزيع الاحتمالي، كما يمكنك تمثيله بيانيًّا كما يأتي:

إرشادات للدراسة

البيانات المنفصلة والبيانات المتصلة

تكون البيانات منفصلة إذا أمكن عد البيانات مثل عدد الأرانب في مزرعة. وتكون البيانات متصلة إذا كانت تأخذ أي قيمة في فترة من الأعداد الحقيقية، فمثلاً أطوال جميع أفراد العينة تمثل بيانات متصلة.

مرازه التعليم Ministry of Education 2021 - 1443

قراءة الرياضيات

إرشادات للدراسة

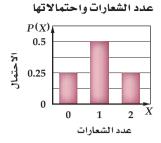
البيانات الوصفية

يمكننا أن نتعامل مع البيانات

الوصفية بوصفها متغيرات عشوائية منفصلة.

احتمال الحوادث المتنافية تذكر أنه إذا كانت A و B

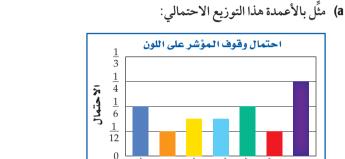
. P(A) = P(A) + P(B)

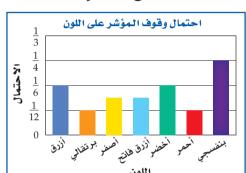

حادثتين متنافيتين، فإن

احتمالات المتغيرات العشوائية يقرأ الرمز P(1) احتمال أن Xيكون المتغير العشوائي مساويًا لـ 1.

$P(0) = \frac{1}{4}$, $P(1) = \frac{1}{2}$, $P(2) = \frac{1}{4}$

X يُبيّن الجدول أدناه والتمثّيل بالأعمدة المجاور التوزيع الاحتمالي للمتغير


2	1	0	عدد الشعارات <i>X</i>
$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	الاحتمال (P(X



2021 - 1443

التوزيع الاحتمالي المنفصل مـثال 3

يوضّح القرص ذو المؤشر الدوّار توزيعًا احتماليًّا، حيث يمكن أن يتوقّف المؤشر على أيُّ من القطاعات الملونة، وقد كتب على كل قطاع احتمال ظهوره (الحظ أن مجموع الاحتمالات يساوي 1).

- b) استعمل التمثيل بالأعمدة؛ لتحدّد اللون الأكبر إمكانية لوقوف المؤشر عنده، ثم أوجد احتماله. أكثر الألوان إمكانية لوقوف المؤشر عنده هو اللون البنفسجي، واحتماله يساوي $\frac{1}{4}$.
 - $P(\bar{c})$ أوجد (أخضر أو أزرق)

احتمال التوقّف عند اللون الأزرق أو الأخضر هو $\frac{1}{6} = \frac{1}{6} + \frac{1}{6}$.

🚺 تحقق من فهمك

يوضح الجدول أدناه توزيعًا احتماليًّا، حيث ألِقي مكعبان مرقمان من 1 إلى 6 مرة واحدة، وسُجّل مجموع العددين الظاهرين على الوجهين العلويين واحتمال كلِّ منها.

12	11	10	9	8	7	6	5	4	3	2	المجموع
$\frac{1}{36}$	$\frac{1}{18}$	1 12	$\frac{1}{9}$	<u>5</u> 36	$\frac{1}{6}$	<u>5</u> 36	$\frac{1}{9}$	1 12	$\frac{1}{18}$	$\frac{1}{36}$	الاحتمال

- **3A)** مثِّل بالأعمدة هذا التوزيع الاحتمالي.
- 3B) استعمل التمثيل بالأعمدة؛ لتحدد الناتج الأكثر إمكانية للوقوع؟ ثم أوجد احتماله.
 - **3C**) أوجد (11 أو 5) .

إن الاحتمالات التي تمت دراستها هنا هي احتمالات نظرية؛ لأنها مبنية على افتراضات يتوقّع الحصول عليها، بينما الاحتمالات التجريبية يتم تقديرها من عدد من التجارب. والقيمة المتوقعة أو التوقع E(X) هي المتوسط الموزون للقيم في التوزيع الاحتمالي المنفصل؛ أي أن القيمة المتوقعة E(x) هي مجموع حواصل صرب قيم المتعير العشوائي X في احتمال كل منها P(X)، ويمكن إيجادها باستعمال القانون $E(X) = \sum_{i=1}^{n} Xi. P(Xi)$ ، وتنتج هذه القيمة من خلال اعتماد الاحتمال النظري كوزن للمتغير العشوائي. ويخبرك بما يمكن حدوثه على المدى البعيد، وذلك بعد

مـثال 4

إرشادات للدراسة

قانون الأعدادالكبيرة ينص قانون الأعداد الكبيرة على أنه كلما ازداد عدد مرات إجراء التجربة، اقتربت قيمة معدل القيم الناتجة من القيمة المتوقعة.

أوجد القيمة المتوقّعة عند رمى مكعب مرقم من 1 إلى 6 مرة واحدة.

القيمة المتوقعة

القيمة المتوقعة E(X) هي مجموع حواصل ضرب قيم المتغير العشوائي X في احتمال كلِّ منها P(X).

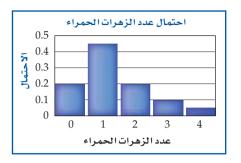
$$E(X) = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right)$$
 اضرب
$$= \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}$$

$$= \frac{21}{6} = 3.5$$

🗹 تحقق من فهمك

4) أوجد القيمة المتوقّعة عند رمي مكعبين مرقمين مرة واحدة، وتسجيل مجموع العددين الظاهرين على الوجهين العلويين.

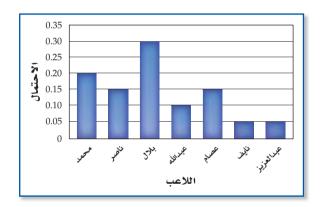
تدرب وحل المسائل


- 1) صندوق فيه 10 كرات، منها 6 حمراء، إذا سحبت منه كرتان معًا عشوائيًا، فما احتمال أن تكون الكرتان حمراوين؟ (مثال 1)
- 2) فن: اختار مسؤول متحف للفنون 4 لوحات بشكل عشوائي من بين 20 لوحة؛ لعرضها في أحد المعارض. ما احتمال أن تكون 3 منها لفنان واحد يشارك بـ 8 لوحات في المتحف؟ (مثال 1)
 - 3) دخل 8 لاعبين A,B,C,D,E,F,G,H في مباراة، إذا اختيرت أسماء اللاعبين عشوائيًّا، فما احتمال أن يكون أول 4 لاعبين مختارين هم A,C,E,G على الترتيب؟ (مثال 2)
- 4) مختبر: دخلت طالبات صف وعددهن 26 إلى مختبر المدرسة. إذا اختارت المعلمة أسماء الطالبات عشوائيًّا لتشكل مجموعات للعمل، فما احتمال أن تكون أول ثلاث طالبات ذُكرت أسماؤهن جميلة، وآمنة، وخديجة على الترتيب؟ (مثال 2)
 - 5) أُلقي مكعبان مرقمان من 1 إلى 6، وسجل العدد الأكبر بين العددين الظاهرين على الوجهين العلويين إذا اختلفا، وأحدهما إذا تساويا. (مثال 3)
 - a) مثِّل بالأعمدة هذا التوزيع الاحتمالي.
 - b) ما الناتج الأقل إمكانية للوقوع؟ وما احتماله؟
 - P(1 = 2) أو جد (2 أو 1) ?

6) أخبار: أجرى موقع إلكتروني مسحًا للمصادر التي يحصل منها الناس على الأخبار بشكل رئيس. والجدول المجاور يبيّن نتائج هذا المسح. (مثال 3)

- الاحتمال المصدر التلفاز 0.35 المذياع 0.31 0.02 0.11 الإنترنت 0.19 0.02 مصادر أخرى
 - a) بيّن أن هذه البيانات تمثّل توزيعًا احتماليًّا.
- إذا اختير أحد الذين شملهم هذا المسح عشوائيًّا، فما احتمال أن
 يكون مصدر أخباره الرئيس الصحف أو الإنترنت؟
 - c) مثّل البيانات بالأعمدة.
 - 7) أوجد القيمة المتوقعة عند سحب قصاصة ورق عشوائيًا من بين 5 قصاصات كتب على كل منها أحد الأرقام 5-1 دون تكرار.
- 8) جوائز: باع أحد النوادي 500 تذكرة دخول لحضور إحدى مبارياته ثمن الواحدة 10 ريالات ، وأجرى سحب عشوائي على أرقام التذاكر خُصصت فيه ثلاث جوائز للأرقام الرابحة، بحيث تربح تذكرة واحدة الجائزة الأولى وقيمتها 1000 ريال، وتربح تذكرتان الجائزة الثانية وقيمتها 100 ريال، وتربح 5 تذاكر الجائزة الثالثة وقيمتها 50 ريالًا. إذا اشترى شخص تذكرة، فما القيمة المتوقعة للربح في هذا الموقف؟ (مثال 4)

وزارة التعليم Ministry of Education 2021 - 1443


 و) أزهار: يوضّح التمثيل البياني أدناه التوزيع الاحتمالي لعدد الأزهار الحمراء عند زراعة 4 بذور.

- .P(0) أو جد
- b) ما احتمال أن تكون زهرتان على الأقل حمراوين؟
- 10) تبرُّعات: قام طلاب الصف الثالث المتوسط في مدرسة بجمع بعض الأطعمة في طرود للتبرع بها للأسر الفقيرة. ولقد أحصى الطلاب أنواع المواد المقدمة كما في الجدول أدناه.
 - a) أوجد احتمال أن يحتوي طرد اختير عشوائيًّا على القمح.
- **b** أوجد احتمال أن يحتوي طرد اختير عشوائيًّا على وجبة طعام أو أرز.
 - 11) جوائز: تنافس 50 متسابقًا منهم جاسم وجلال وعلي في سحب عشوائي على أربع جوائز. ما احتمال أن يربح اثنان من الأسماء الثلاثة؟
- 12) ألعاب رياضية: اختار معلم التربية الرياضية 5 طلاب عشوائيًا من بين الطلاب البالغ عددهم 124 طالبًا ليساعدوه على تطبيق بعض الألعاب. ما احتمال أن يختار واحدًا على الأقل من بين عشرة أقارب له يجلسون مع الطلاب؟
 - 13 درجات: أُجري اختبار في الرياضيات لطلاب الصف الثالث الثانوي، والجدول أدناه يُبين نتائج هذا الاختبار.

نتائج اختبار الرياضيات					
الاحتمال	التقدير				
0.29	A				
0.43	В				
0.17	С				
0.11	D				
0	F				

- a بيّن أن هذه البيانات تمثّل توزيعًا احتماليًّا.
- **b** إذا اختير طالب عشوائيًّا، فما احتمال ألا يقل تقديره عن B؟
 - c) مثّل البيانات بالأعمدة.
- 14) كرات زجاجية: لدى زيد 35 كرة زجاجية؛ 8 منها سوداء، و 12 حمراء، و 9 خضراء، والبقية بيضاء. فإذا سحب كرتين معًا عشوائلًا.
 - a) مثِّل بالأعمدة هذا التوزيع الاحتمالي؟
 - b) ما الناتج ذو الإمكانية الأقل للوقوع؟
 - P(| (احداهما سوداء والأخرى خضراء)) أوجد
- 15) مسابقات: يُبيّن التمثيل بالأعمدة احتمال أن يربح كل طالب جائزة.

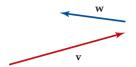
- a بيِّن أن هذه البيات تمثِّل توزيعًا احتماليًّا؟
 - **b** أوجد (ربح محمد أو بلال) P.

16) أمطار: التوزيع الاحتمالي أدناه يوضّح عدد الأيام الممطرة في السنة في إحدى الدول. أوجّد القيمة المتوقّعة لعدد الأيام الممطّرة.

عدد الأيام الممطرة في السنة									
8	7	6	5	4	3	2	1	0	عدد الأيام
0.02	0.05	0.08	0.1	0.25	0.15	0.15	0.1	0.1	الاحتمال

17) بطاقات: رُقِّمت مجموعة بطاقات على النحو الآتى: 3 بطاقات تم ترقيم كل منها بالرقم 8، وبطاقتان تمّ ترقيم كل منهما بالعدد 10، و 4 بطاقات تمّ ترقيم كل منها بالرقم 6، و3 بطاقات تمّ ترقيم كل منها بالرقم 5، وبطاقتان تمّ ترقيم كل منها بالرقم 2، وبطاقة تمّ ترقيمها بالرقم 3. إذا سُحبت من هذه البطاقات واحدة عشوائيًّا، فما القيمة المتوقعة لهذه البطاقة؟

مسائل مهارات التفكير العليا


18) اكتشف الخطأ: كوَّنت كلُّ من فاطمة، وزينب توزيعًا احتماليًّا باستعمال التمثيل بالأعمدة لمجموع العددين الناتجين عن دوران مؤشر القرص المجاور مرتين. أيهما يعدُّ تمثيلها صحيحًا؟ فسرِّ إجابتك.

- $\begin{array}{c} \underline{9} \\ 32 \\ \underline{14} \\ 7 \\ 32 \\ \underline{316} \\ 5 \\ \underline{32} \\ \underline{18} \\ 3 \\ \underline{32} \\ \underline{116} \\ \underline{132} \\ \end{array}$ ■ فاطمة ■ زينب
- 19) تبرير: حدّد ما إذا كانت العبارة الآتية صحيحة دائمًا، أو صحيحة أحيانًا، أو غير صحيحة أبدًا: «يُبنى الاحتمال النظري على نتائج التجارب». برِّر إجابتك.
 - 20) مسألة مفتوحة: كوِّن توزيعًا احتماليًّا منفصلًا فيه 5 نواتج مع تحديد احتمال كل منها.

مراجعة تراكمية

21) أوجد محصلة المتجهين أدناه مستعملًا قاعدة المثلث، أو متوازى الأضلاع. ثمّ حدّد اتجاهه بالنسبة للأفقى. (الدرس 1-1)

- اكتب المعادلة $r = 12\cos\theta$ على الصورة الديكارتية. (الدرس 2-2)
- 23) يحتوى صندوق على 3 كرات بيضاء و 4 كرات حمراء. سُحبت كرتان على التوالي دون إرجاع. ما احتمال أن تكون الثانية بيضاء إذا كانت الأولى حمراء؟ (الدرس 3-3)

تدريب على اختبار

- 24) يحتوى صندوق على 4 كرات حمراء و 6 كرات صفراء، و 4 كرات خضراء، وكرتين زرقاوين. سُحبت 3 كرات معًا عشوائيًّا. إذا كان X متغيرًا عشوائيًّا يدل على عدد الكرات الزرقاء المسحوبة، فما جميع القيم الممكنة لـX؟
 - 1,2 A
 - 0, 1, 2 **B**
 - 1, 2, 3 **C**
 - 0, 1, 2, 3 **D**
 - 25) ما القيمة المتوقّعة للتوزيع الاحتمالي المبيَّن في الجدول أدناه؟

3	2	1	x
0.1	0.8	0.1	p(x)

- 0.1 **A**
- 0.16 **B**
- 0.56 **C**
- 1 **D**

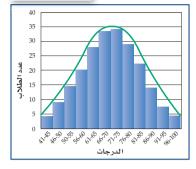
التوزيع الطبيعي The Normal Distribution

درست التوزيعات الاحتمالية. (الدرس4-3)

رفيونا رسياق:

روا الدرن له

- أحدًد ما إذا كانت مجموعة بيانات تبدو موزّعة طبيعيًّا أو ملتوية .
- أستعمل القانون التجريبي لأجد الاحتمالات.


المضردات

التوزيع الاحتمالي المتصل continuous probability distribution

> التوزيع الطبيعي normal distribution

التوزيع الملتوي skewed distribution

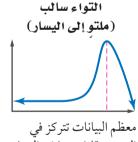
مثَّل المعلم عبدالعزيز درجات طلاب مدرسته في مادة الرياضيات بيانيًّا كما هو مبيِّن في الشكل المجاور. لاحظ أنّ هناك تجمعًا لدرجات الطلاب في المنتصف، كما أن شكل التمثيل البياني لتوزيع الدرجات يشبه الجرس تقريبًا. إن مثل هذا التوزيع يسمى توزيعًا طبيعيًّا.

المتوسط=الوسيط=المنوال

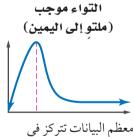
التوزيعات الطبيعية والملتوية في التوزيع الاحتمالي المتصل والذي هو توزيع احتمالي متغيره العشوائي متصل، يمكن للنواتج أن تأخذ أي قيمة

في فترة من الأعداد الحقيقية، ومثال ذلك أطوال أشخاص وأوزانهم، ومستوى الدهنيات عند الأشخاص البالغين. وأفضل مثال على التوزيعات الاحتمالية المتصلة هو التوزيع الطبيعي.

خصائص التوزيع الطبيعي


- التمثيل البياني له منحنى يشبه الجرس، ومتماثل حول المستقيم الرأسى المار بالمتوسط.
 - يتساوى فيه المتوسط والوسيط والمنوال.
 - المنحنى متصل.

مـثال 1


مفهوم أساسي

• يقترب المنحنى من المحور x في جزأيه الموجب والسالب، ولكنه Y يمسه.

على الرغم من أن التوزيع الطبيعي متصل، فإن التوزيعات المنفصلة أيضًا يمكن أن يكون لها شكل التوزيع الطبيعي. ويمكن للتوزيعات أن تظهر بأشكَّال أخرى تُسمّى توزيعات ملتوية.

اليمين وقليل منها في اليسار.

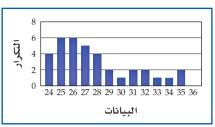
اليسار وقليل منها في اليمين.

تصنيف بيانات التوزيع

حدِّد ما إذا كانت البيانات في الجدول التكراري أدناه تظهر التواء موجبًا، أو التواء سالبًا، أو موزَّعة توزيعًا طبيعيًّا:

												. /-
21	19	18	17	16	15	14	13	12	11	10	البيانات	(a
1	2	4	3	5	8	6	4	1	1	1	التكرار	

م الم 10 11 12 13 14 15 16 17 18 19 20 21 ماليم Ministry of Education 202 - 1443


البيانات

استعمل الجدول التكراري أعلاه؛ لتمثيل البيانات بالأعمدة. وبما أن التمثيل عالِ في الوسط، ويبدو كأنه إلى حد ما متماثل حول المتوسط، فإن البيانات تُعتبر موزَّعة توزيعًا طبيعيًّا.

حدِّد ما إذا كانت البيانات في الجدول التكراري أدناه تظهر التواءً موجبًا، أو التواءً سالبًا، أو موزَّعة توزيعًا طبيعيًّا:

													1
35	34	33	32	31	30	29	28	27	26	25	24	البيانات	П
2	1	1	2	2	1	2	4	5	6	6	4	التكرار	

استعمل الجدول التكراري أعلاه؛ لتمثيل البيانات بالأعمدة. وبما أن التمثيل عالٍ في جهة اليسار ومنخفض في كل من الوسط وعلى اليمين، فإن التوزيع يبدو كأنه ملتو إلى اليمين (التواء موجب).

🗹 تحقق من فهمك

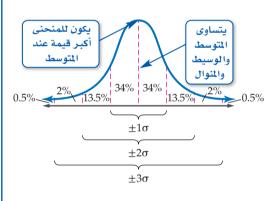
1) حدِّد ما إذا كانت البيانات في الجدول المجاور تُظهر التواءً مو جبًا، أو التواءً سالبًا، أو موزَّعة توزيعًا طبيعيًّا.

7	6													
-3	2	ı				i								
	₀ L	24	25	26	27	28	29	30	31	32	33	34	35	36
							ات	يان	الب					

45	44	43	42	41	40	39	38	قياس الحذاء
1	3	2	4	7	9	8	6	التكرار

القانون التجريبي إن المساحة بين قيمتين من البيانات تمثِّل نسبة البيانات التي تقع بين هاتين القيمتين. ويمكن أن يستعمل القانون التجريبي لوصف المساحات تحت المنحني الطبيعي، والتي تقع ضمن انحراف أو انحرافين أو ثلاثة انحر افات معيارية من المتوسط.

القانون التجريبي


مفهوم أساسى

 μ يتصف التوزيع الطبيعي الذي متوسطه وانحرافه المعيارى σ بالخصائص الآتية:

• يقع %68 تقريبًا من البيانات ضمن الفترة $.(\mu-\sigma,\mu+\sigma)$

وهذا يعنى أن %68 من البيانات لا يتجاوز بعدها عن المتوسط قيمة الانحراف المعياري.

• يقع %95 تقريبًا من البيانات ضمن الفترة $(\mu - 2\sigma, \mu + 2\sigma)$

وهذا يعني أن الغالبية العظمى من البيانات (%95) لا يتجاوز بعدها عن المتوسط ضعف قيمة الانحراف المعياري.

• يقع %99 تقريبًا من البيانات ضمن الفترة $(\mu - 3\sigma, \mu + 3\sigma)$

وهذا يعني أن جميع البيانات تقريبًا (99%) لا يتجاوز بعدها عن المتوسط ثلاثة أمثال الانحراف المعياري.

إرشادات للدراسة

إرشادات للدراسة

«منفصل» مقابل «متصل»

يأخذ التوزيع الاحتمالي المنفصل عددًا محدودًا

من القيم، وغالبًا ما تكون

أعدادًا صحيحة. أما التوزيع

الاحتمالي المتصل، فيأخذ عددًا غير محدد من القيم تنتمى إلى فترة متصلة.

وفى حالة التوزيع الاحتمالي المتصل يكون احتمال أن يأخذ المتغير العشوائي قيمة واحدة

فقط مساويًا للصفر.

التوزيع الطبيعي

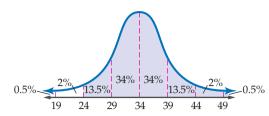
في الحالات جميعها يجب أن يكون عدد البيانات كبيرًا ليكون التوزيع طبيعيًّا تقريبًا.

التوزيع الطبيعي

المتوسط لتوزيع طبيعي 34، وانحرافه المعياري 5. أوجد احتمال أن تزيد قيمة لـ X تم اختيارها عشوائيًا في هذا التوزيع عن 24، (أى أو جد (P(X > 24)).

 $\mu = 34$, $\sigma = 5$

مـثال 2


الخطوة 1 أوجد القيم $\mu \pm \sigma$, $\mu \pm 2\sigma$, $\mu \pm 3\sigma$ أوهى المتوسط مضافًا إليه أو مطروحًا منه المضاعفات الثلاثة الأولى للانحراف المعياري).

 $\mu \pm \sigma = 34 \pm 5 = 29,39$

 $\mu \pm 2\sigma = 34 \pm 10 = 24,44$

 $\mu \pm 3\sigma = 34 \pm 15 = 19,49$

وزارة التعليم Ministry of Education 2021 - 1443

الخطوة 2 ارسم منحنى التوزيع الطبيعي، وحدُّد عليه المتوسط 34 μ والقيم السابقة.

الخطوة 3 ظلل المنطقة التي تمثل الاحتمال المطلوب. 6.5%

الخطوة 4 احسب الاحتمال المطلوب:

$$P(X > 24) = (13.5 + 34 + 34 + 13.5 + 2 + 0.5)\% = 97.5\%$$

 $P(X > 24) \approx 97.5\%$ إذن:

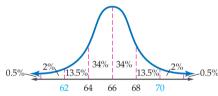
🗹 تحقق من فهمك

2) أوجد احتمال أن تكون قيمة تم اختيارها عشوائيًّا في التوزيع الوارد في المثال 2 أقل من 49.

تُمثَّل العينة التي يكون توزيعها توزيعًا طبيعيًّا بمنحنى طبيعي، وكأنها مجتمعًا.

عينة موزَّعة توزيعًا طبيعيًّا

🥡 مثال 3 من واقع الحياة


أطوال: توزّع أطوال 1800 يافع توزيعًا طبيعيًّا بمتوسط 66 in ، وانحراف معياري يساوي 2in.

a) ما العدد التقريبي لليافعين الذين تتراوح أطوالهم بين in 62 و 70 in ؟

ارسم منحني التوزيع الطبيعي.

تبعد كل من 62,70 عن المتوسط الحسابي انحرافين معياريين؛ لذا فإن %95 من البيانات واقعة بين الطولين 70,20

ولأن 1710 = %95 × 1800، لذا يوجد 1710 يافعين تقريبًا تقع أطوالهم بين 62 in و 70 in.

b) ما احتمال أن يتم اختيار أحد اليافعين عشوائيًّا، بحيث يزيد طوله على 68 in؟

0.5% 2% 34% 34% 13.5% 2% 0.5% 62 64 66 68 70

من الشكل المجاور، القيمة الأكبر من 68 تبعد أكثر من انحراف معياري واحد عن المتوسط الحسابي، وتتوزّع الأطوال على النحو الآتي: %13.5 بين انحراف معياري واحد وانحرافين معياريين، %2 بين انحرافين معياريين وثلاثة انحرافات معيارية، %5.0 فوق 3 انحرافات معيارية.

لذا فاحتمال اختيار يافع يكون طوله أكبر من 68in

(13.5 + 2 + 0.5)% = 16%

إذن الاحتمال المطلوب يساوي %16 تقريبًا

🗹 تحقق من فهمك

درجات: إذا علمت أن كتل 100 موظف في شركة تتوزَّع توزيعًا طبيعيًّا بمتوسط حسابي مقداره 70 كيلوجرامًا، وانحراف معياري 10 كيلوجرامات، فاعتمد على ذلك في الإجابة عن السؤالين الآتيين:

3A) ما العدد التقريبي للموظفين الذين تقع كتلهم بين 80, 80 كيلوجرامًا؟

3B) ما احتمال أن يتمّ اختيار موظف بصورة عشوائية، وتكون كتلته أقل من 90 كيلوجرامًا؟

تدرب وحل المسائل

1) درجات: يوضّح الجدول أدناه نتائج أحد الاختبارات (النهاية العظمى للاختبار 40). حدّد ما إذا كانت البيانات تُظهر التواءً موجبًا، أو التواءً سالبًا، أو موزَّعة توزيعًا طبيعيًّا. (مثال 1)

عدد الطلاب	فئات الدرجات
12	13-15
27	16-18
29	19-21
19	22-24
8	25-27
1	28-31
1	32-35

 حدد ما إذا كانت البيانات في الجدول أدناه تُظهر التواءً موجبًا، أو التواءً سالبًا، أو موزعة توزيعًا طبيعيًا:

عدد زوار المتنزهات				
عدد المتنزهات	عدد الزوار بالآلاف			
10	3–4			
2	5–6			
2	7–8			
1	9–10			
1	11–12			
4	13 فأكثر			

تتوزّع مجموعة بيانات توزيعًا طبيعيًّا بمتوسط حسابي 161، وانحراف معياري 12، أوجد أن يتم اختيار قيمة لـ X عشوائيًّا من هذا التوزيع، بحيث تكون أقل من 149، أي أو جد (149 X . (مثال 2)

إذا توزّعت البيانات في الأسئلة 7-4 توزيعًا طبيعيًّا، وكان المتوسط الحسابي والانحراف المعياري لكل منها كما هو موضّح، فأوجد الاحتمال المطلوب.

- $\mu = 74$, $\sigma = 6$, P(X > 86) (4
- $\mu = 13$, $\sigma = 0.4$, P(X < 12.6) (5
- $\mu = 63 \,,\, \sigma = 4 \,,\, P(59 < X < 71) \ \ \textbf{(6}$
- $\mu = 91$, $\sigma = 6$, P(73 < X < 103) (7
- هدارس: أعطى عمران اختبارًا قصيرًا لطلبته البالغ عددهم (50)
 طالبًا، وكانت الدرجات موزَّعة توزيعًا طبيعيًّا بمتوسط حسابي 21،
 وانحراف معياري 2. (مثال 3)
 - a) ما العدد التقريبي للطلاب الذين تقع درجاتهم بين 23, 19؟
 - **b**) ما احتمال أن تقع درجة أحد الطلاب بين 17 و25 ؟

- و) بطاريات السيارة: إذا حُدِّد عمْرُ بطارية السيارة بالمسافة التي تقطعها باستعمال هذه البطارية، وعلمت أن عمر أحد أنواع بطاريات السيارات يتوزَّع توزيعًا طبيعيًّا بمتوسط حسابي 100000km وانحراف معياري 10000km. وتنتج إحدى الشركات 20000 بطارية في الشهر، فأجب عما يأتي:
 - **a**) ما العدد التقريبي للبطاريات التي يتراوح عمرها بين 90000 km - 110000 km
 - **b)** ما العدد التقريبي للبطاريات التي يزيد عمرها على 120000 km
- c) ما العدد التقريبي للبطاريات التي يقلُّ عمرها عن 90000 km؟
 - d) ما احتمال أن تشتري بطارية عشوائيًّا، ويتراوح عمرها بين 80000 km - 110000 km
 - 10) صحة: يتوزَّع مستوى الدهنيات (الكولسترول) في فئة الشباب الذكور في إحدى الدول توزيعًا طبيعيًّا بمتوسط حسابي 158.3، وانحراف معيارى 6.6
 - a) ما احتمال أن تقل نسبة الكولسترول عند الشباب الذكور عن 7.151.7
- **b)** كم شخصًا تقريبًا من بين 900 شخص شملتهم الدراسة يتراوح مستوى الكولسترول عندهم بين 171.5 145.1
 - 11) طعام: تتوزَّع مدة صلاحية نوع معين من البطاطس توزيعًا طبيعيًّا بمتوسط حسابي 180 يومًا، وانحراف معياري 30 يومًا.
- a) ما احتمال أن تقع مدة صلاحية المنتج بين 150 يومًا، 210 أيام؟
- **b**) ما احتمال أن تقع مدة صلاحية المنتج بين 180 يومًا، 210 أيام؟
 - c ما احتمال أن تقل مدة صلاحية المنتج عن 90 يومًا؟
 - d ما احتمال أن تزيد مدة صلاحية المنتج على 210 أيام؟
- **12) طول:** تتوزَّع أطوال 880 طالبًا في إحدى الجامعات توزيعًا طبيعيًّا بمتوسط حسابي مقداره 67 in ، وانحرافٍ معياري مقداره
 - a) كم طالبًا تقريبًا يزيد طوله على 72 in ؟
 - b) ما احتمال أن تقع أطوال الطلاب بين 59.5 in و 69.5 in؟
- 13) صناعة: تُستعمل آلة لتعبئة عبوات بالمياه المعدنية، وتختلف كمية الماء اختلافًا ضئيلًا بين العبوات. إذا كان حجم الماء في 120 عبوة يتبع توزيعًا طبيعيًّا بمتوسط حسابي 1.1L، وانحراف معياري 0.02L فأجب عما يأتي:
 - a كم عبوة تقريبًا يكون حجم الماء فيها أقل من £1.06.

مسائل مهارات التفكير العليا

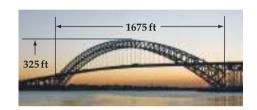
14) اكتشف الخطأ: تتوزّع أطوال أقطار نوع من الأشجار توزيعًا طبيعيًّا بمتوسط مقداره 11.5 cm ، وانحراف معياري مقداره 2.5 cm ومدى من 3.6 cm إلى 19.8 cm ، وقد حاولت كل من مريم وأمينة إيجاد مدى %68 من البيانات التي تقع في وسط التوزيع. أيهما كانت إجابتها صحيحة؟ فسر إجابتك.

مريم أمينة

مدى البيانات 16.2cm، 8% من البدى يساوي تقريبًا 11cm، ويتوزَّع هذا البدى بالتساوي حول البتوسط 11.5cm، أي أن مدى %68 سيكون من 17 cm 6.15.

تهتد النسبة 88% من $\mu + \sigma$ إلى $\mu + \sigma$ أي أن مدى 8% سيكون من 14~cm إلى 14~cm

- 15) تحدُّ: في مستودع للأدوات الكهربائية عدد من المسجلات التي تعمل على البطارية. إذا كانت أعمار البطاريات تتوزَّع توزيعًا طبيعيًّا بمتوسط حسابي 8.0h، وانحراف معياري 0.7h، فما العدد التقريبي للمسجلات في المستودع إذا علمت أن هناك 8 مسجّلات يزيد عمر بطارياتها على 10.1h?
 - 16) اكتب: اشرح الفرق بين التوزيعات الموجبة الالتواء، والتوزيعات السالبة الالتواء، والتوزيعات الطبيعية لمجموعة بيانات. أعطِ مثالًا على كل منها.
 - (17) **تبرير:** بحسب القانون التجريبي، فإن معظم البيانات في التوزيع الطبيعي تقع ضمن الفترة $(\mu-\sigma,\mu+\sigma)$. هل هذا صحيح أم خاطئ؟ برِّر إجابتك.
 - 18) مسألة مفتوحة: أوجد بيانات واقعية تبدو كأنها تتوزَّع توزيعًا طبيعيًّا، أعطِ خصائص هذا التوزيع فيما يتعلق بالمتوسط الحسابي، والانحراف المعياري. ومثِّل البيانات بيانيًّا.
 - 19) **مسألة مفتوحة:** أعطِ مثالًا على توزيع احتمالي منفصل، وآخر متصل. وصف الفرق بينهما.


مراجعة تراكمية

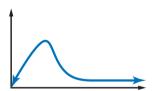
20) طلاب: رُشِّع 3 طلاب من الصف الأول الثانوي ، و 11 طالبًا من الصف الثاني الثانوي لتوزيع بعض الطرود على الفقراء. إذا اختير من بينهم 4 طلاب عشوائيًّا، فما احتمال أن تتضمّن العينة طالبين من الصف الأول الثانوي، وطالبين من الصف الثاني الثانوي؟ (الدرس 4-3)

21) مسابقات: يبيِّن الجدول أدناه أعداد الطلاب الذين شاركوا في المسابقات الثقافية، والذين لم يشاركوا من الصفوف: الأول والثاني والثالث الثانوي في مدرسة ما. إذا اختير أحد الطلاب عشوائيًّا، فأوجد احتمال أن يكون قد شارك في المسابقات الثقافية علمًا بأنه من الصف الثالث الثانوي؟ (الدرس 3-3)

الثالث الثانوي	الثاني الثانوي	الأول الثانوي	
6	9	7	المشاركون
22	20	23	غير المشاركين

22) جسور: جسر لعبور المشاة فوق مسطح مائي على شكل قطع مكافئ فتحته إلى أسفل، أوجد معادلة الجسر، مفترضًا أن نقطة الأصل على سطح الماء تحت رأس القطع. (مهارة سابقة)

تدريب على اختبار


23) يتوزّع عمر 10000 مصباح كهربائي توزيعًا طبيعيًّا بمتوسط حسابي 300 يوم، وانحراف معياري 40 يومًا. كم مصباحًا يقع عمره بين 260 يومًا، 340 يومًا؟

2500 **A**

3400 B

5000 **C** 6800 **D**

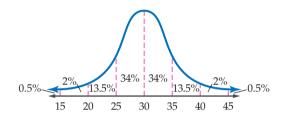
24) ما الوصف الأفضل لمنحنى التوزيع الاحتمالي الممثّل أدناه؟

C توزیع طبیعی

A توزيع سالب الالتواء

D توزيع موجب الالتواء

B توزيع متماثل


- 25) صناعة: تتوزَّع قياسات أقطار مجموعة من الأقراص المدمجة التي تصنعها إحدى الشركات توزيعًا طبيعيًّا بانحراف معياري مقداره 120 mm، وبمتوسط حسابي .120 mm
 - a) ما احتمال أن يزيد طول قطر قرص اختير عشوائيًّا على 120 mm؟
- b) إذا كانت الشركة تصنع 1000 قرص في الساعة، فما القددات لير التقريبي للأقراص المصنوعة في الساعة الواحدة، والتي يتراوح 2021 قطر كل منها بين 119 mm, 122 mm؟

القانون التجريبي والمئينات The Empirical Rule and Percentiles

عند معرفة المتوسط والانحراف المعياري لتوزيع طبيعي، تستنتج أن %68 , %95 , %99 من البيانات ستكون ضمن انحراف معياري واحد، أو انحرافين معياريين أو ثلاثة انحرافات معيارية عن المتوسط على الترتيب، وهذا ما يُسمّى القانون التجريبي. ويمكنك استعمال القانون التجريبي لتجد المئينات. والمئين n يقابل القيمة التي يقل عنها أو يساويها % n من قيم البيانات.

نشاط

في اختبار للرياضيات لطلاب الصف الثالث الثانوي وُجد أن درجات الطلاب تتوزَّع توزيعًا طبيعيًّا بمتوسط 30، وانحراف معياري 5

الخطوة 1 ارسم منحنى التوزيع الطبيعي لدرجات الطلاب المشابه للشكل المجاور، و عين عليه المتوسط وأيضًا المتوسط مضافًا إليه أو مطروحًا منه مضاعفات الانحراف المعياري كما هو موضح في الشكل.

الخطوة 2 الدرجة 30 هي المتوسط، وبالرجوع إلى الشكل يمكن أن ترى أن 50% من الدرجات أقل من الدرجة 30 أو تساويها؛ لذا يمكنك القول: إن الدرجة 30 تقابل المئين 50.

ما المئين الذي يقابل الدرجة 35؟

الخطوة 3 ما المئين الذي يقابل الدرجة 40؟ الخطوة 4 ما الدرجة التي تقابل المئين 99.5؟

تمارين:

- في كلِّ من السؤالين التاليين، ارسم منحني التوزيع الطبيعي، ثم أجب عن المطلوب.
- 1) إذا كانت درجات الطلاب في اختبار مادة الفيزياء موزّعة توزيعًا طبيعيًّا بمتوسط 15، وانحراف معياري 2، فأوجد المئينات التي تقابل الدرجات 13, 13, 12.
- 2) إذا كانت درجات الطلاب في اختبار مادة الكيمياء موزّعة توزيعًا طبيعيًّا بمتوسط 40، وانحراف معياري 4، فأوجد الدرجات التي تقابل المئينات 84, 50, 99.5.

رفيونا رسياق:

التوزيعات ذات الحدين Binomial Distributions

مضهوم أساسي

في لعبة الكرة الطائرة تبين أن اللاعب سلمان ينجح في لعب الإرسال الساحق الذي لا يصده الخصم في %36 من محاولاته، وبذلك يحصل فريقه على نقطة في كل مرة ينجح فيها.

التوزيع ذو الحدين كثير من التجارب الاحتمالية يكون لها نتيجتان فقط؛ نجاح أو فشل أو يمكن جعلها كذلك. فمثلًا في مسائل الاختيار من متعدد التي لها 5 إجابات، يمكن تصنيف نتائج الإجابة عن كل فقرة إلى صح، أو خطأ، ويمكن تصنيف نتائج دواء طبي على أنه فعّال أو غير فعّال.

الحدين. (مهارة سابقة)

أميّز تجربة ذات الحدين.

درست استعمال نظرية ذات

 أجد الاحتمالات باستعمال التوزيع ذي الحدين ومفكوكه.

المفرادات

تجربة ذات الحدين binomial experiment

التوزيع ذو الحدين binomial distribution

تجربة ذات الحدين

تجربة ذات الحدين هي تجربة احتمالية تحقق الشروط الآتية:

- يُعاد إجراء التجربة لعدد محدد (n) من المحاولات المستقلة (المرات) .
 - كل محاولة لها فقط نتيجتان متوقعتان؛ نجاح S ، أو فشل F .
- q ويرمز له بالحرف p هو نفسه في كل محاولة. واحتمال الفشل P(F) ويرمز له بالحرف p1-p هو نفسه في كل محاولة ويساوي

ويُمثّل المتغير العشوائي X عدد مرات النجاح في n من المحاولات.

تمييز التجربة ذات الحدين

حدّد ما إذا كانت كل تجربة مما يأتي ذات حدين، أو يمكن جعلها كذلك. وإذا كانت تجربة ذات حدين، فاكتب قيم n, p, q، وقيم المتغير العشوائي الممكنة، وإذا لم تكن كذلك فبيّن السبب.

- a) تُبيّن نتيجة لمسح إحصائي داخل إحدى المدارس أن %68 من الطلاب يمتلكون حاسبة بيانية. إذا تم اختيار 6 طلاب عشوائيًّا، وسؤالهم عمَّا إذا كانوا يمتلكون هذه الآلة؛ وكان المتغير العشوائي X يُمثَّل عدد الطلاب الذين يملكون الحاسبة البيانية، فإن:
 - هذه التجربة تحقق شروط تجربة ذات الحدين وهي:
 - كل طالب تم اختياره يُمثّل محاولة، وعملية اختيار الطلاب الستة تتكون من محاولات مستقلة.
 - للتجربة نتيجتان متوقعتان: الطالب يملك الحاسبة البيانية S، أو Y يملكها Y
 - . P(S) = 0.68 احتمال النجاح نفسه لكل طالب تم اختياره •
 - وفي هذه التجربة q=1-p ، احتمال الفشل q=1-p ، أي أن:
- يان: من الله من الله من الله من الله عدد الطلاب الله ين يملكون حاسبة بيانية من الله تم اختيارهم، أي أن: q=1-0.68=0.32
 - X = 0, 1, 2, 3, 4, 5, 6
- b) يحتوي صندوق على 52 بطاقة، وخُصّص لكل 13 بطاقة أحد الألوان الآتية: الأحمر، الأسود، الأخضر، الأبيض. سحبت منه 5 بطاقات الواحدة تلو الأخرى دون إرجاع. وكان المتغير العشوائي X يدل على عدد البطاقات المسحوبة ذات اللون الأخضر.

في هذه التجربة، كل بطاقة يتم سحبها تُمثّل محاولة، وبما أنه يتم الاحتفاظ بالبطاقة التي تم اختيارها المستقلة التي المحاولات غير مستقلة، واحتمال النجاح في كل محاولة يختلف عن الأخرى؛ 2021 لذا فإن هذه التجربة ليست ذات حدين.

🗹 تحقق من فهمك

حدّد ما إذا كانت كل تجربة مما يأتي ذات حدين، أو يمكن جعلها كذلك. وإذا كانت تجربة ذات حدين، فاكتب قيم n, p, q، وقيم المتغير العشوائي الممكنة، وإذا لم تكن كذلك فبيّن السبب.

- (1A) أظهرت نتيجة لمسح إحصائي في إحدى المدارس ذات الزي الموحَّد أن 61% يحبون الزي الجديد، وأن %24 لا يحبونه. إذا تم اختيار 20 طالبًا بشكل عشوائي، وسؤالهم عمَّا إذا كانوا يحبون الزي الجديد. وكان المتغير العشوائي X يدل على عدد الطلاب الذين يحبون الزي الجديد.
- (الاختيار من متعدد» لكل فقرة منها أربع إجابات، واحدة فقرة من نوع «الاختيار من متعدد» لكل فقرة منها أربع إجابات، واحدة فقط صحيحة (دون معرفة علمية بموضوع الاختبار). وكان المتغير العشوائي X يدل على عدد الإجابات الصحيحة.

يُسمى توزيع النتائج المتوقَّعة لتجربة ذات حدين والاحتمالات المرتبطة بها توزيع ذات الحدين. ويمكن حساب الاحتمالات في هذا التوزيع باستعمال الصيغة $C_X p^X q^{n-X}$ التي تمثل حدًّا في مفكوك $(p+q)^n$.

مفهوم أساسي صيغة احتمال ذات الحدين

احتمال النجاح في X مرة من n من المحاولات المستقلة في تجربة ذات الحدين هو:

$$P(X) = {}_{n}C_{X}p^{X}q^{n-X} = \frac{n!}{(n-X)!X!}p^{X}q^{n-X}$$

حيث p احتمال النجاح ، وp احتمال الفشل في المحاولة الواحدة.

🥡 مثال 2 من واقع الحياة

التوزيع ذو الحدين

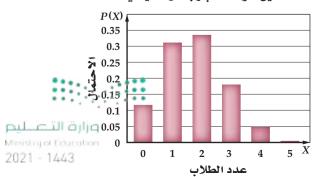
اختبار: في اختبار نهائي، أكد %35 من الطلاب أنهم أجابوا بشكل اعتيادي. إذا اختير 5 طلاب عشوائيًّا، وتم سؤالهم عما إذا أدوا الاختبار بشكل اعتيادي. وكان المتغير العشوائي X يدل على عدد الطلاب الذين أجابوا بنعم عن السؤال، فكوِّن جدولًا للتوزيع ذي الحدين، ومثّله بالأعمدة، ثم أوجد احتمال أن يجيب x طلاب على الأقل عن السؤال بنعم.

هذه تجربة ذات حدين فيها: n=5, p=0.35, q=1-0.35=0.65 . استعمل الحاسبة البيانية TI-nspire هذه تجربة ذات حدين فيها X مستعملًا صيغة احتمال ذات الحدين .

$$P(0) = {}_{5}C_{0} \cdot 0.35^{0} \cdot 0.65^{5} \approx 0.116$$

$$P(1) = {}_{5}C_{1} \cdot 0.35^{1} \cdot 0.65^{4} \approx 0.312$$

$$P(2) = {}_{5}C_{2} \cdot 0.35^{2} \cdot 0.65^{3} \approx 0.336$$


$$P(3) = {}_{5}C_{3} \cdot 0.35^{3} \cdot 0.65^{2} \approx 0.181$$

$$P(4) = {}_{5}C_{4} \cdot 0.35^{4} \cdot 0.65^{1} \approx 0.049$$

$$P(5) = {}_{5}C_{5} \cdot 0.35^{5} \cdot 0.65^{0} \approx 0.005$$

وفيما يأتي جدول التوزيع ذي الحدين للمتغير X ، وتمثيله بالأعمدة.

عدد الذين أذُّوا الاختبار بشكل اعتيادي

X	P(X)
0	0.116
1	0.312
2	0.336
3	0.181
4	0.049
5	0.005

إرشاد تقنى

حساب احتمال ذات الحدين

لإيجاد كل احتمال لذات الحدين على الحاسبة البيانية: استعمل الأمر binomPdf(n, p, x) قائمة تطبيق الحاسبة .

p (1) لإيجاد p (1) اكتب binomPdf (5, 0.35, 1) اكتب Enter ثم اضغط 0.312386 كما يمكن إيجادها باستعمال الآلة الحاسبة العلمية كما يأتي:

5 SHIFT \div 1 \times 0.35 x^* 1 \blacktriangleright \times (1 - 0.35) x^* (5 - 1) =

اليسار إلى اليمين:

فتظهر الشاشة

P(3) + P(4) + P(5) وجد احتمال أن 3 طلاب على الأقل أجابوا بنعم، أو جد

احتمال 3 طلاب على الأقل
$$P(X \geq 3) = P(3) + P(4) + P(5)$$

$$P(3) = 0.181, P(4) = 0.049, P(5) = 0.005$$
 = $0.181 + 0.049 + 0.005$

$$= 0.235 = 23.5\%$$

إرشادات للدراسة

اختيار الاحتمالات أحيانًا يكون من الأسهل أن تجد احتمال الفشل وتطرح هذه النتيجة من 1 لتجد احتمال النجاح، لأنهما احتمالان متتامان.

🗹 تحقق من فهمك

2) كليات: يدرس في إحدى الكليات %48 من الطلاب لغة عالمية خلال سنة التخرج. إذا اختير 7 خريجين عشوائيًّا، وتم سؤالهم عمَّا إذا درسوا لغة عالمية في سنتهم الأخيرة. وكان المتغير العشوائي X يدل على عدد الطلاب الذين أجابوا بنعم، فكوِّن التوزيع ذا الحدين، ومثِّله بالأعمدة، ثم أوجد احتمال أن يجيب أقل من 4 طلاب بنعم.

تستعمل الصيغ الآتية؛ لإيجاد المتوسط والتباين والانحراف المعياري للتوزيع ذي الحدين.

مفهوم أساسي المتوسط والتباين والانحراف المعياري للتوزيع ذي الحدين

يحسب المتوسط والتباين والانحراف المعياري لمتغير عشوائي X في التوزيع ذي الحدين بالصيغ الآتية:

$$u = np$$
 المتوسط

$$\sigma^2 = npq$$
 التباین

$$\sigma = \sqrt{\sigma^2} = \sqrt{npq}$$
 الانحراف المعياري

مـثال 3 المتوسط والتباين والانحراف المعياري للتوزيع ذي الحدين

اختبار: بالرجوع إلى تجربة ذات الحدين في المثال 2 . أوجد المتوسط والتباين والانحراف المعياري للمتغير العشوائي X، ثُمَّ فسّر معنى المتوسط في سياق الموقف.

استعمل صيغ المتوسط والتباين والانحراف المعياري للتوزيع ذي الحدين. في هذه التجربة ذات الحدين n=5, p=0.35, q=0.65

$$\mu = np$$

$$=5(0.35)=1.75$$

$$\sigma^2 = npq$$

$$= 5(0.35)(0.65) = 1.1375$$

$$\sigma = \sqrt{\sigma^2}$$

$$=\sqrt{1.1375} \simeq 1.0665$$

متوسط التوزيع يساوي 1.8 تقريبًا، ويعني أن خريجَين تقريبًا من أصل 5 أجابوا بنعم. كل من التباين والانحراف المعياري يساوي 1.1 تقريبًا.

تحقق من فهمك

كليات: أوجد المتوسط والتباين والانحراف المعياري للمتغير العشوائي X في تحقق من فهمك 2، وفسّر معنى المتوسط في سياق الموقف.

عندما يزداد عدد المحاولات في تجربة ذات الحدين، يمكن استعمال التوزيع الطبيعي لتقريب التوزيع ذي الحدين.

مفهوم أساسي تقريب التوزيع ذي الحدين إلى التوزيع الطبيعي

في التوزيع ذي الحدين عندما تُمثّل n عدد المحاولات ، واحتمال النجاح p ، واحتمال الفشل p ، ويكون ، $\mu = np$ يمكن تقريب التوزيع ذي الحدين إلى توزيع طبيعي بمتوسط، $n p \ge 5$, $n q \ge 5$. $\sigma = \sqrt{npq}$ وانحراف معياري

مـثال 4 تقريب التوزيع ذي الحدين إلى توزيع طبيعي

أشارت دراسة سابقة إلى أن %64 من الخريجين يرون أن سنوات الجامعة كانت ممتعة. وقد نفّذ بلال دراسة مسحية على 300 من هؤلاء الخريجين اختارهم عشوائيًّا. ما احتمال أن يوافق 200 خريج منهم على الأقل على ما جاء في الدراسة الإحصائية السابقة؟

في الدراسة المسحية التي نفَّذها بلال، عدد الخريجين الذين يرون أن سنوات الجامعة كانت ممتعة يتبع التوزيع ذا الحدين، حيث:

$$n=300\,, p=0.64\,, q=0.36$$

وحيث إن:

إرشادات للدراسة

التقريب إلى التوزيع

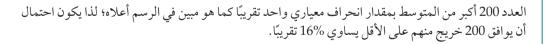
يستعمل التقريب إلى التوزيع الطبيعي؛ لأنه مع زيادة 11

يصبح استعمال التوزيع ذي الحدين لإيجاد الاحتمال

عملية معقّدة وصعبة.

$$n p = 300 (0.64) = 192 > 5$$

$$n \ q = 300 \, (0.36) = 108 > 5$$
يمكنك استعمال التوزيع الطبيعي لتقريب الاحتمال على النحو الآتي:


المتوسط للتوزيع الطبيعي $\mu = n p$

$$n = 300$$
, $p = 0.64$ $= 300(0.64) = 192$

الانحراف المعياري للتوزيع الطبيعي $\sigma = \sqrt{n p q}$

$$n = 300, p = 0.64, q = 0.36$$
 = $\sqrt{300(0.64)(0.36)}$

استعمل الآلة الحاسبة ≈ 8.31

🔽 تحقق من فهمك

4) أشارت دراسة سابقة إلى أن %32 من أولياء الأمور المستطلعة آراؤهم يرون أنه يجب تقليل عدد أيام الإجازة الصيفية للطلاب في نهاية العام الدراسي. غير أن آية ترى أن النسبة أقل من ذلك، ولذلك قامت بإجراء دراسة مسحية شملت 250 من أولياء الأمور اختارتهم بطريقة عشوائية ممن استهدفتهم الدراسة السابقة. ما احتمال ألًّا يرى أكثر من 65 من أولياء الأمور وجوبَ تقليل عدد أيام الإجازة الصيفية؟

13.5%

200

0.5%

تدرب وحل المسائل

حدّد ما إذا كانت كل تجربة مما يأتي ذات حدين، أو يمكن جعلها ذات حدين. وإن كانت كذلك، فاكتب قيم n, p, q، ثم اكتب كل قيم المتغير العشوائي الممكنة. وإذا لم تكن تجربة ذات حدين، فبيِّن السبب. (مثال 1)

- 1) تم ترقيم أوجه مكعب بالأرقام من 1 إلى 6، ثم أُلقي المكعب
 10 مرات، والمتغير العشوائي X يدل على عدد مرات ظهور الرقم 5.
- ألقيت قطعة نقد 20 مرة، والمتغير العشوائي X يدل على عدد مرات ظهور الكتابة.
 - X سألت 15 شخصًا عن أعمارهم، والمتغير العشوائي X يدل على أعمار هؤلاء الأشخاص.
- 4) صندوق به 52 كرة، منها 13 كرة حمراء، و13 كرة زرقاء، و13 كرة بيضاء، و13 كرة صفراء. سحبت 10 كرات على التوالي دون إرجاع. والمتغير العشوائي X يدل على عدد الكرات البيضاء المسحوبة.

كوّن التوزيع ذا الحدين لكلِّ متغير عشوائي مما يأتي، ومثّله بالأعمدة، ثم أوجد المتوسط، وفسّر معناه في سياق الموقف، ثم أوجد التباين، والانحراف المعياري. (المثالان 2,3)

- وإذا كان % 89 من طلاب المرحلة الثانوية في إحدى المدارس يتابعون مباريات منتخبهم الوطني، وتم اختيار 5 طلاب عشوائيًا من هذه المدرسة، وسؤالهم عما إذا كانوا يتابعون مباريات منتخبهم الوطني.
 - 6) بيّنت دراسة أن % 26 من موظفي إحدى الشركات يستعملون الإنترنت في عملهم. إذا تم اختيار 10 موظفين من هذه الشركة عشوائيًّا، وسؤالهم عما إذا كانوا يستعملون الإنترنت في عملهم.
- أفادت دراسة إحصائية أن % 65 من طلاب الجامعات الذين يمتلكون سيارات يستعملون أحزمة الأمان في أثناء قيادة سياراتهم. إذا تم اختيار 8 طلاب عشوائيًّا ممن يمتلكون سيارات، وسؤالهم إن كانوا يستعملون أحزمة أمان في أثناء قيادة سياراتهم.
- 8) أعمال صيفية: تبيَّن في دراسة سابقة أن %90 من طلاب الصفوف العليا في مدرسة ثانوية يحصلون على أعمال صيفية، لكن منذرًا قدّر أن النسبة أقل من ذلك؛ لذا قام بدراسة مسحية شملت 400 طالب من الصفوف العليا تم اختيارهم عشوائيًّا. ما احتمال ألا يكون أكثر من 348 من الطلاب المستهدفين حصلوا على عمل صيفى؟ (مثال 4)

- و رخصة قيادة: اعتمادًا على إحدى الدراسات المسحية السابقة، إذا علمت أن 85% من طلاب إحدى الجامعات لديهم رخص قيادة سيارة، فما احتمال أن يكون 6 طلاب على الأقل من بين 10 تم اختيارهم عشوائيًّا لديهم رخص قيادة سيارة؟
 - 10) كرة قدم: كسب فريق لكرة القدم 75.7% من مبارياته. أوجد احتمال أن يكسب 7 مباريات على الأقل من بين مبارياته العشر القادمة.
- (11) رياضيون: وفق بعض الدراسات الحديثة، إذا علمت أن %80 من طلاب المدارس الثانوية يمارسون رياضة واحدة على الأقل في مدرستهم، إذا اختير 6 طلاب عشوائيًّا، وكان المتغير العشوائي X يدل على عدد الذين يمارسون رياضة على الأقل.
 - a) فأوجد الاحتمالات المرتبطة بعدد الطلاب الذي يمارسون رياضة واحدة على الأقل.
- b) ما احتمال ألا يزيد عدد الذين يمارسون الرياضة عن طالبين؟
- 21) غسيل سيارات: يقوم بعض الأشخاص بغسيل السيارات لزبائن بعض المجمعات التجارية مقابل أجر معين. وقد أفادت دراسة مسحية أن %65 من الزبائن يدفعون أكثر من الحد الأدنى لأجرة غسيل سياراتهم. ما احتمال أن يدفع أربعة على الأقل من خمسة زبائن مبلغًا أكثر من الحد الأدنى للأجر.
- 13) حوافر دعائية: تضع شركة للعصائر حوافز بحيث إن 30% من علب العصير تربح علبة مجانية، وقد اشترت سعاد 10 علب. مثّل بالأعمدة البيانية التوزيع الاحتمالي للتوزيع ذي الحدين إذا كان المتغير العشوائي يدل على عدد علب العصير الرابحة.
- 14) برامج دينية: بناءً على دراسة مسحية سابقة، إذا علمت أن %70 من الأشخاص تحت سن العشرين يتابعون برنامجًا دينيًا على الأقل في التلفاز. إذا استطلع خليل رأي 200 شخص تحت سن 20 سنة، فما احتمال أن 146 شخصًا منهم على الأقل يتابعون برنامجًا دينيًا على الأقل؟

إذا علمت أن نسبة النجاح في توزيع ذي حدين 60%، ويوجد 18 محاولة، فأجب.

- 15) ما احتمال ألا توجد أي محاولة ناجحة؟
- **16)** ما احتمال أن توجد 12 محاولة فاشلة؟

مراجعة تراكمية

حدّد ما إذا كانت المعادلة في كلِّ ممايأتي تمثِّل دائرة، أو قطعًا مكافئًا، أو قطعًا ناقصًا، أو قطعًا زائدًا، دون كتابتها على الصورة القياسية.

وبرِّر إجابتك: (مهارة سابقة)

- $x^2 + 4y^2 = 100$ (28)
- $5y^2 10x = 0$ (29)
- $x^2 + y^2 3x + 4y 16 = 0$ (30)
- (31 سرعة: وضع نظام لمراقبة سرعة السيارات وتسجيلها في شارع قريب من إحدى المدارس، إذا توزّعت هذه السرعات توزيعًا طبيعيًّا بمتوسط 4mi/h، وانحراف معياري 4mi/h، فكم سيارة كانت تسير بسرعة تقل عن 33mi/h في عينة حجمها 425 سيارة؟ (الدرس 5-3)
- (32) دراسة جامعيّة: أوضح استطلاع في إحدى المدارس الثانوية أن %88 من الطلاب يريدون إكمال دراستهم الجامعية. وقد قام نواف باستطلاع آراء 150 طالبًا تم اختيارهم عشوائيًّا. ما احتمال أن يكون في العينة 132 طالبًا على الأقل يرغبون في استكمال دراستهم الجامعية؟ (الدرس 5-3)

تدريب على اختبار

- (33 اختبار: تقدّمت سمر لاختبار من عشرة أسئلة من نوع الاختيار من متعدد لكل منها أربعة بدائل، لكنها أجابت عن الأسئلة من خلال التخمين (دون معرفة علمية بالموضوع)، ما احتمال أن تحصل على:
 - a أسئلة صحيحة الإجابة؟
 - b) 9 أسئلة صحيحة الإجابة؟
 - 0 سؤال صحيح الإجابة؟
 - d) 3 أسئلة صحيحة الإجابة؟
- 34) إذا كان احتمال نجاح عملية جراحية %90، فما احتمال نجاع عملية واحدة على الأقل إذا أُجريت العملية ثلاث مرات؟
 - 0.1 **(B** 0.001 **(A**
 - 0.999 **(D** 0.9 **(C**
- میل قرازم Ministry of Education

17) تنس طاولة: كسب لاعب %85 من مبارياته التي لعبها خلال مسيرته الرياضية. أوجد الاحتمالات الآتية:

- a) أن يكسب 3 مباريات من بين 5 مباريات قادمة.
- b أن يكسب مبارتين على الأقل من بين المباريات الخمس القادمة.
- c) أن يخسر مباراة واحدة على الأقل في مبارياته الخمس القادمة.

لكل من التوزيعات ذات الحدين الآتية، يدلّ الرمز n على عدد المحاولات، ويدلّ الرمز p على احتمال نجاح كل محاولة. أوجد احتمال الحصول على X من النجاحات.

- $n = 8, p = 0.3, X \ge 2$ (18)
- n = 10, p = 0.2, X > 2 (19)
- $n = 6, p = 0.6, X \le 4$ (20
- $n = 9, p = 0.25, X \le 5$ (21)
- $n = 10, p = 0.75, X \ge 8$ (22)
- n = 12, p = 0.1, X < 3 (23)

مسائل مهارات التفكير العليا

- **24) تحدُّ:** في تقريب التوزيع ذي الحدين إلى التوزيع الطبيعي، إذا علمت أن احتمال وجود 60 60 نجاحًا يساوي %34، وكان $\overline{x}=60$ ، واحتمال النجاح %36، فكم كان عدد المحاولات؟
- 25) تبرير: حدّد ما إذا كانت العبارة الآتية صحيحة دائمًا، أو صحيحة أحيانًا، أو غير صحيحة أبدًا. وبرّر إجابتك. «من الأفضل أن تجد احتمال الفشل وتطرحه من 1 لتجد احتمال النجاح».
- مسألة مفتوحة: صف حالة من أنشطة المدرسة أو المجتمع ينطبق عليها التوزيع ذو الحدين، وحدّد عدد المحاولات المستقلة (n)، وكلًّا من: احتمال النجاح واحتمال الفشل في المحاولة الواحدة.
- 27) اكتب: فسّر العلاقة بين التجربة ذات الحدين والتوزيع ذي الحدين.

2021 - 1443

دليل الدراسة والمراجعة

ملخص الفصل

مفاهيم أساسية

العينة والمجتمع (الدرسان 2-3.1.3)

- تكون العينة متحيزة إذا صُمّمت لصالح نواتج معينة .
 - تكون العينة غير متحيزة إذا كانت عشوائية.

الارتباط والسببية

• عندما يوجد ارتباط بين ظاهرتين فإن كلًا منهما تؤثر في الأخرى، وعندما يوجد سببية، فإن وقوع ظاهرة معينة يكون سببًا مباشرًا في وقوع الظاهرة الأخرى.

هامش خطأ المعاينة

عند سحب عينة حجمها n من مجتمع، فإنه يمكن تقريب هامش خطأ المعاينة بالقيمة $\frac{1}{\sqrt{n}}$.

ك المعياري	الانحراف
العينة	المجتمع
$\sqrt{\frac{\sum_{k=1}^{n} (x_k - \overline{x})^2}{n-1}}$	$\sqrt{\frac{\sum_{k=1}^{n} (x_k - \mu)^2}{n}}$

الاحتمال المشروط (الدرس 3-3)

- الاحتمال المشروط: هو احتمال وقوع حادثة معينة إذا عُلم وقوع حادثة أخرى.
- الجداول التوافقية : هي جداول تكرارية ذات بعدين، يتم فيها تسجيل بيانات ضمن خلايا، حيث إن كل خلية من خلايا الجدول تُمثّل تكرارًا يسمى تكرارًا نسبيًّا، إذ يكون منسوبًا إلى مجموع التكرارات في الجدول، أو منسوبًا إلى مجموع التكرارات في الصف الذي تقع فيه الخلية، أو منسوبًا إلى مجموع التكرارات في العمود الذي تقع فيه الخلية، ويمكن استعمال الجداول التوافقية في إيجاد الاحتمال المشروط.

التوزيعات الاحتمالية (الدروس 6-3, 3-5, 3-4)

الوصف	المفهوم
عدد محدّد من النواتج الممكنة	منفصل
عدد غير محدّد من النواتج الممكنة	متصل
منحنيات متماثلة	طبيعي
منحنيات غير متماثلة	ملتوي
تجربة احتمالية يكون لها نتيجتان فقط	تجربة ذات الحدين

المضردات

الدراسة المسحية ص 86 المجتمع ص 86 تعداد عام ص 86 العينة ص 86 المتحيزة ص 86 غير المتحيزة ص 86 الدراسة القائمة على الملاحظة ص 87 الدراسة التجريبية ص 87 المجموعة التجريبية ص 87 المجموعة الضابطة ص 87 الارتباط ص88 السببية ص 88 التحليل الإحصائي ص 92 المتغير ص 92 بيانات في متغير واحد ص 92 مقياس النزعة المركزية ص 92 المَعْلَمة ص 92 الإحصائي ص 92 هامش خطأ المعاينة ص 93 مقاييس التشتت ص 93 التباين ص 93

الجدول التوافقي ص 98 التكرار النسبى ص 98 النجاح ص 102 الفشل ص 102 المتغير العشوائي ص 103 المتغير العشوائي المنفصل ص 103 التوزيع الاحتمالي ص 103 التوزيع الاحتمالي المنفصل ص 103 الاحتمال النظري ص 104 الاحتمال التجريبي ص 104 القيمة المتوقعة ص 104 التوزيع الاحتمالي المتصل ص 108 التوزيع الطبيعي ص 108 التوزيع الملتوي ص 108 تجربة ذات حدين ص 114 التوزيع ذو الحدين ص 115

الانحراف المعياري ص 93

الاحتمال المشروط ص 97

اختبر مفرداتك

اختر المفردة المناسبة لكل عبارة مما يأتي من القائمة أعلاه:

- 1) _____لمتغير عشوائي معين هو دالة تربط فضاء العينة باحتمالات نواتج فضاء العينة .
 - 2) عندما توجد علاقة بين حادثتين، فإنه يوجد بينهما.
 - 3) الدراسة المسحية تكون _____ إذا صُمّمت لصالح نواتج معينة.
- 4) إذا أُعطيت مجموعة معالجة شكلية لا أثر لها في النتيجة، فإن هذه المجموعة تُسمّى _____
- 5) يُحدّد _____ الفترة التي تبين الفرق في الاستجابة بين العينة والمجتمع.

5-1

3-2

الدراسات التجريبية والمسحية والقائمة على الملاحظة (الصفحات 90 - 86)

مـثال 1

اختار صاحب وكالة للسيارات 100 زبون عشوائيًّا قاموا بإجراء الصيانة الدورية لسياراتهم في الوكالة حديثًا، وطرح سؤالًا عليهم حول نوعية الخدمة التي تُقدّمها الوكالة. هل يُمثّل الزبائن الذين تم اختيارهم عينة متحيزة أم غير متحيزة؟ فسّر إجابتك.

غير متحيزة ؛ لأنّ لكل شخص من زبائن الوكالة الفرصة نفسها لأن يكون من بين العينة.

مـثال 2

وزَّع معلم الرياضيات طلابه مجموعتين عشوائيًّا، وطبِّق عليهم اختبارًا، حيث طلب من المجموعة الأولى أداء تمارين رياضية قبل الاختبار، بينما أعطى المجموعة الثانية الاختبار دون أن يطلب منهم تأدية أي تمارين رياضية، وقارن نتائجهم في الاختبار. هل هذه الدراسة دراسة مسحية أم دراسة قائمة على الملاحظة أم دراسة تجريبية؟ وإذا كانت تجريبية، فاذكر كلَّا من المجموعتين الضابطة والتجريبية، ثم بيِّن ما إذا كانت الدراسة متحيزة أم لا.

دراسة تجريبية: المجموعة التجريبية هي الأولى، والضابطة هي الثانية، والدراسة التجريبية متحيزة؛ لأن كل طالب يعرف المجموعة التي ينتمي اليها. حدِّد ما إذا كانت كل دراسة مسحية فيما يأتي تتبني عينة متحيزة أو غير متحيزة، ثم فسر إجابتك:

- ون مجمع تجاري؛ لمعرفة إن يتم اختيار كل عاشر متسوِّق يخرج من مجمع تجاري؛ لمعرفة إن كان مرتاحًا أو مطمئنًا لشرائه من المجمع.
 - 7) يتم اختيار كل عاشر طالب يخرج من المدرسة؛ لمعرفة أحب المواد الدراسية إليه في المدرسة.
- السريعة إلى زبائنه أن يكملوا استبانة حول أفضل مطعم للوجبات السريعة.

حدِّد ما إذا كانت كل حالة تحتاج إلى دراسة مسحية أو دراسة قائمة على الملاحظة أو دراسة تجريبية.

- اختر 100 طالب نصفهم يعمل جزئيًّا بعد الدراسة، وقارن بين الأوساط لدرجاتهم.
- 10) اختر 100 شخص، وقسّمهم إلى نصفين عشوائيًّا، ودع إحدى المجموعتين تتناول وجبات قليلة الدسم، بينما تتناول الأخرى وجبات اعتيادية. وقارن النتائج؛ لمعرفة أثر الوجبات القليلة الدسم على صحة الجسم.

التحليل الإحصائي (الصفحات96 - 92)

- 11) فصول السنة: في دراسة مسحية عشوائية شملت 3446 شخصًا، ذكر %34 منهم أن الربيع هو أفضل فصول السنة لديهم. ما هامش الخطأ في المعاينة؟
- 12) سباحة: في أثناء تمرين السباحة، قاس خالد الأزمنة التي استغرقها في كل مرة لقطع مسافة 400 m، وسجل النتائج الممثلة في الجدول أدناه. أو جد الانحراف المعياري للأزمنة التي حققها.

الزمن بالثواني							
307	312	308	320	311	301		
302	304	308	309	315	313		
306	314	316	313	313	311		
309	306	310	319	326	329		
309	314	318	315	318	320		

مـثال 3

قال %12 من عينة حجمها 2645 شخصًا: إن كرة القدم هي الأكثر تفضيلًا لديهم. ما هامش خطأ المعاينة ؟

هامش خطأ المعاينة
$$=\pm \frac{1}{\sqrt{n}}$$
 $=\pm \frac{1}{\sqrt{2645}}$ $\approx \pm 0.019$

هامش خطأ المعاينة %1.9 تقريبًا.

3-3

3-4

دليل الدراسة والمراجعة

الاحتمال المشروط (الصفحات 97 - 97)

- 13) كرة طائرة: يحصل طارق على نقطة في 65% من مرات قيامه بضربة الإرسال، ما احتمال ألا يحصل على نقطة في ضربة الإرسال الثانية علمًا بأنه حصل على نقطة في ضربة الإرسال الأولى ؟
 - 14) في الجدول أدناه إذا اختير طالب عشوائيًّا فأجب عما يأتي:

لا يلبس نظارات	يلبس نظارات	
15	6	الأول الثانوي
22	5	الثاني الثانوي

- ا ما احتمال أن يكون الطالب من الأول الثانوي علمًا بأنه يلبس نظارات؟
 - **(b)** ما احتمال أن يكون من الذين لا يلبسون النظارات علمًا بأنه من الثاني الثانوي؟

مـثال 4

دراسة: أوجد احتمال أن يأخذ طالب اختير عشوائيًّا حصة إضافية علمًا مأنه طالب جديد.

لا يأخذ حصصًا إضافية (X)	يأخذ حصصًا إضافية (E)	
84	126	طالب جدید (N)
72	98	طالب قديم (0)

وف الاحتمال المشروط
$$P(E \mid N) = \frac{P(E \cap N)}{P(N)}$$

$$P(E \cap N) = \frac{126}{380}, P(N) = \frac{210}{380}$$

$$= \frac{126}{380} \div \frac{210}{380}$$

$$= \frac{126}{210} = \frac{3}{5}$$

الاحتمال والتوزيعات الاحتمالية (الصفحات 107 - 102)

قرعة الألعاب: خلط يوسف بطاقات الألعاب جميعها في صندوق، حيث تشكّلت البطاقات من 12 بطاقة لكرة القدم، 8 بطاقات لكرة الطائرة، 5 بطاقات لكرة السلة وجميعها متماثلة. إذا تم اختيار 3 بطاقات بصورة عشوائية، فأوجد احتمال كل من:

- P(3) (15 بطاقات للكرة الطائرة)
 - (16 بطاقات لكرة القدم)
- P(بطاقة لكرة السلة وبطاقتان للكرة الطائرة)
 - P(بطاقتان لكرة السلة وبطاقة لكرة القدم) (18
- (19) بطاقات: مجموعة بطاقات مرقّمة مكوّنة من 3 بطاقات عليها الرقم 9، 4 عليها الرقم 5، وبطاقتين على كلِّ منهما الرقم 2، وبطاقة عليها الرقم 3. إذا سحبت بطاقة عشوائيًّا من مجموعة البطاقات، فما القيمة المتوقّعة لهذه البطاقة؟

مـثال 5

لدى حمزة 5 كتب في حقيبته، هي الرياضيات والكيمياء واللغة الإنجليزية واللغة العربية والتاريخ. إذا قام بترتيبها على رف في صف واحد عشوائيًّا، فما احتمال أن تأتي كتب اللغة الإنجليزية واللغة العربية والرياضيات في أقصى اليسار ؟

الخطوة 1 حدّد عدد النجاحات.

مكان الكتب الثلاثة إلى اليسار
$$_3P_3$$

أمكنة الكتابين الآخرين
$$_2P_2$$

استعمل التباديل ومبدأ العد الأساسي لإيجاد s .

$$s = {}_{3}P_{3} \cdot {}_{2}P_{2} = 3! \cdot 2! = 12$$

.s+f أو جد عدد عناصر فضاء العينة العينة

$$s + f = 120$$
 ${}_{5}P_{5} = 5! = 120$

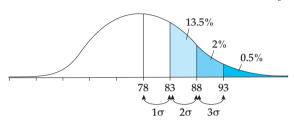
وتمثل عدد الترتيبات الممكنة للكتب الخمسة على الرف.

الخطوة 3 أوجد الاحتمال.

احتمال الفحاء
$$P(S) = \frac{s}{s+f} = \frac{12}{120} = 0.1$$

احتمال وضع كتب اللغة الإنجليزية واللغة العربية والرياضيات في التعليم المساوي 0.1 أو 100%. أقصى اليسار يساوي 0.1 أو 100%.

3-5


التوزيع الطبيعي (الصفحات 112 - 108)

في كلِّ من السؤالين الآتيين توزيع طبيعي بمتوسط وانحراف معياري. أوجد الاحتمال المطلوب في كل منهما.

- $\mu = 121$, $\sigma = 9$, P(X > 103) (20
- $\mu = 181$, $\sigma = 12$, P(X > 169) (21
- **(22) زمن الركض:** أزمنة الركض لمسافة 40m لفريق كرة القدم المدرسي تتوزَّع توزيعًا طبيعيًّا بمتوسط 4.78، وانحراف معياري 0.15s. ما نسبة اللاعبين الذين يقل زمن قطعهم المسافة عن 4.4s?

مـثال 6

تتوزّع مجموعة من البيانات توزيعًا طبيعيًّا بمتوسط 78، وانحراف معياري 5 . أوجد احتمال أن تزيد قيمة لـ X اختيرت عشوائيًّا عن 83 .

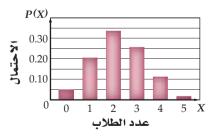
بما أن $\mu + \sigma = 78 + 5 = 83$ بلذا فإن الاحتمال المطلوب يكون $\mu + \sigma = 78 + 5 = 83$ مساويًا $\mu + \sigma = 78 + 5 = 13.5\%$

التوزيعات ذات الحدين (الصفحات 119- 114)

23) أشخاص مشهورون: في إحدى الدراسات تَبيّن أن %63 من الشباب يفضلون أداء أحد الرياضيين المشهورين. إذا اختير 5 من الشباب عشوائيًّا، وتم سؤالهم عما إذا كانوا يفضلون أداء هذا

الرياضي أو لا.

3-6


- (a) إذا مثَّل المتغير العشوائي X عدد الشباب الذين يفضَّلون أداء هذا الرياضي، فكوِّن جدول التوزيع الاحتمالي لذات الحدين للمتغير X، ومثِّله بالأعمدة.
- **b** أوجد احتمال أن يكون أكثر من 2 من الشباب يفضِّلون أداء هذا الرياضي.
- 24) ساعات: أشارت دراسة مسحية للبالغين أن ما نسبته %74 من البالغين يلبسون ساعة يد.وقد قام بكر باستطلاع رأي 200 شخص من البالغين عشوائيًّا. ما احتمال أن يكون 160 شخصًا على الأقل ممن شملهم الاستطلاع يلبسون ساعة يد؟

مـثال 7

- رسم هندسي: أُجريت دراسة في إحدى المدارس، فَتبيّن أن 45% من الطلاب يستطيعون رسم مخروط. إذا تم اختيار 5 منهم بشكل عشوائي، ومثَّل المتغير العشوائي X عدد الطلاب الذين لديهم مقدرة على رسم مخروط، فأجب عمّا يأتى:
 - (a كوّن جدول التوزيع الاحتمالي لذات الحدين للمتغير X ، ومثّله بالأعمدة.

. n = 5, p = 0.45, q = 1 - 0.45 = 0.55 في هذه المسألة

X	0	1	2	3	4	5
P(X)	0.050	0.206	0.337	0.276	0.113	0.018

- b) أوجد المتوسط والانحراف المعياري والتباين للتوزيع.
- $\mu = np = 5(0.45) = 2.25$

 $\sigma^2 = npq = 5(0.45)(0.55) = 1.2375$

 $\sigma = \sqrt{\sigma^2} = \sqrt{1.2375} \simeq 1.1124$

2021 - 1443

دليل الدراسة والمراجعة

تطبيقات ومسائل

- 25) حدِّد ما إذا كان كل موقف مما يأتي يمثِّل دراسة تجريبيَّة، أو دراسة قائمة على الملاحظة، وفي حالة الدراسة التجريبية، اذكر كلَّا من المجموعة الضابطة والمجموعة التجريبيَّة، ثم بيَّن إن وجد تحيز أو لا: (الدرس 1-3)
- a) اختر 100 طالب نصفهم يأتي إلى المدرسة مبكرًا، وقارن بين تحصيلهم في مادة معينة.
- اختر 100 موظف، واقسمهم نصفين، وأخضع إحدى المجموعتين إلى دورة في اللغة الإنجليزية، أما الأخرى فلا تخضعها لأي دورة تدريبية.
- 26) اختير 10 طلاب بصورة عشوائية من الصف الثالث الثانوي، وقيست أطوالهم بالسنتمترات فكانت كما يلي:

170, 165, 155, 168, 177, 180, 168, 167, 160, 161

بيِّن ما إذا كانت هذه البيانات تمثِّل عينة أم مجتمعًا، ثم اوجد الانحراف المعياري لهذه الأطوال. (الدرس 2-3)

27) سجِّلت أعداد الطلاب ذوي العيون الزرقاء أو غير الزرقاء في أحد المعاهد.

سنة ثانية	سنة أولى	
10	5	عيون زرقاء
80	95	عيون ليستزرقاء

إذا اختير أحد الطلاب عشوائيًّا، فأوجد احتمال أن تكون عيونه زرقاء علمًا بأنه في السنة الثانية. (الدرس 3-3)

- رُميت 3 قطع نقد مرة واحدة. إذا كان المتغير العشوائي X يدل على عدد مرات ظهور الشعار، فاكتب جدول التوزيع الاحتمالي للمتغير العشوائي X، ثم مثله بالأعمدة. (الدرس X-3)
 - 29) سكة حديد: إذا كانت الفترات الزمنية للانتظار التي يقضيها 16000 مسافر في إحدى محطات سكك الحديد موزَّعة توزيعًا طبيعيًّا بمتوسط 72 min، وانحراف معياري 15 min، فأوجد نسبة المسافرين الذين ينتظرون أكثر من 42 min. (الدرس 5-3)
 - (30) إجازات: في دراسة مسحية سابقة وجد أن ما نسبته %70 من العاملين يأخذون إجازاتهم السنوية في الصيف، لكن محسنًا يعتقد أن هذا الرقم مبالغ فيه، فقام باستطلاع رأي 650 عاملًا عشوائيًا. ما احتمال ألا يأخذ أكثر من 420 عاملًا إجازاتهم في الصيف؟ (الدرس 3-5)

اختبار الفصل

حدّد ما إذا كانت العبارات الآتية تصف ارتباطًا أو سببية، ثم فسّر إجابتك:

- 1) عندما يرى محمود البرق، فإنه يسمع الرعد بعد ذلك.
- 2) عندما يركض نايف عند مدخل المدرسة، فإنه يكون متأخرًا عن المدرسة.

حدّد ما إذا كانت كل دراسة مسحية فيما يأتي تتبنى عينة متحيزة أو غير متحيزة، ثم فسر إجابتك:

- استطلع صاحب مخزن يبيع من خلال الشبكة العنكبوتية زبائنه عن أهمية وجود الإنترنت في المنزل.
- 4) يختار معلم 5 أسماء لطلاب يدرسهم؛ لإلقاء كلمة الصباح بعد أن يقوم بوضع الأسماء جميعها في سلة ويخلطها .

أي مقاييس النزعة المركزية يصف كلًّا من البيانات الآتية بصورة أفضل؟ ولماذا؟

	درجات اختبار							
3	3	3	4	4				
4	4	5	5	4				
4	3	3	3	3				
4	4	3	3	3				
3	4	3	5	4				

	الطول بالبوصة							
64	61	62	64	61				
83	66	61	65	63				
61	65	62	63	84				
61	63	66	62	61				

فيما يأتي المتوسط والانحراف المعياري لمجموعة من البيانات تتوزَّع توزيعًا طبيعيًّا، أوجد الاحتمال المطلوب في كل منها:

- $\mu = 54$, $\sigma = 5$, P(X > 44) (7
- $\mu = 35$, $\sigma = 2.4$, P(X < 37.4) (8

يحتوي كيس على 10 كرات زجاجية زرقاء، و8 كرات حمراء، و 12 خضراء، وجميعها متماثلة، سحبت كرتان واحدة تلو الأخرى، أوجد الاحتمال لكل من:

- 9) الكرة الثانية حمراء، علمًا بأن الكرة الأولى زرقاء دون إرجاع.
- 10) الكرة الثانية زرقاء، علمًا بأن الكرة الأولى خضراء مع الإرجاع.

11) اختبارات: أعطى المعلم أيمن طلابه الفرصة لإعادة أحد الاختبارات، كما عقد درس مراجعة اختياري يوم الخميس قبل إعادة الاختبار لمن يرغب. بعض الطلاب تحسن أداؤهم، والبعض الآخر لم يتحسن، والجدول أدناه يبين ذلك. إذا اختير طالب عشوائيًّا، فأوجد:

لم يتحسن	تحسن	
3	12	حضر المراجعة
6	4	لم يحضر المراجعة

- a) احتمال أن يكون قد تحسن علمًا بأنه حضر المراجعة.
- b) احتمال أنه لم يحضر المراجعة علمًا بأنه لم يتحسّن.
- 12) اختيار من متعدد: شارك 10 طلاب من الصف الأول الثانوي، و 15 طالبًا من الصف الثاني الثانوي في السحب على 5 جوائز. إذا كان السحب عشوائيًّا، فما احتمال أن يكون الرابحون 3 من الصف الأول الثانوي، وطالبين من الصف الثاني الثانوي؟
 - 0.46% **A** تقريبًا
 - 0.25% **B** تقريبًا
 - 70% **C** تقريبًا
 - 30% **D** تقريبًا
- 13) سُحبت كرتان معًا من صندوق يحتوي على 3 كرات زرقاء، وكرتين حمراوين. إذا كان المتغير العشوائي X يدل على عدد الكرات الزرقاء المسحوبة، فكوِّن جدول التوزيع الاحتمالي للمتغير العشوائي X.
 - 14) طقس: أخبر الراصد الجوي أن احتمال سقوط المطرفي كل يوم من الأيام السبعة القادمة %40 . أوجد احتمال أن يسقط المطرفي يومين من هذه الأيام على الأقل.
- 15) حديقة: يخطط يعقوب لزرع 24 شجرة أزهار، إذا علمت أن البذور التي أحضرها لأزهار من اللونين الأبيض والأزرق، وأنها لم تزهر بعد، ولكنه يعلم أن احتمال الحصول على زهرة زرقاء %75، فما احتمال حصوله على 20 زهرة زرقاء على الأقل؟

وزارة التعليم Ministry of Education 2021 - 1443

النهايات والاشتقاق **Limits and Differentiation**

الفصل

درستُ النهايات ومُعدلات

روا القرن به

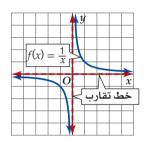
- أحسبُ نهايات دوال كثيرات الحدود والدوال النسبية.
 - أُجدُ مُعدلات التغيّر اللحظية.
- أحد مشتقات دوال كثيرات الحدود، وأحسب قيمها.
- أجد المساحة تحت منحنى دالة باستعمال التكامل المحدد.
- أجد الدالة الأصلية، وأستعمل النظرية الأساسية في التفاضل والتكامل في إيجاد التكامل المحدد.

الماذا ا

الأفعوانية: بُعد الاشتقاق وسيلة فاعلة ومهمة عند دراسة مُعدلات التغير غير الثابتة ، فإذا ركبت الأفعوانية يومًا، فإن سرعتك وتسارعك يتغيران باستمرار مع الزمن بالاعتماد على موقعك، وستدرس في هذا الفصل مسائل تحتوي مواقف

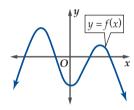
قراءة سابقة: استعمل أسئلة اختبار منتصف الفصل؛ لتساعدك على توقّع محتوى النصف الأول من

التهيئة للفصل 4


مراجعة المفردات

النهاية (limit)

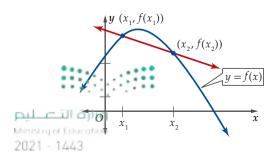
الاقتراب من قيمة دون الوصول إليها بالضرورة.


خطوط التقارب (asymptotes)

خط يقترب من منحنى الدالة دون أن يصله.

(continuous function) الدالة المتصلة

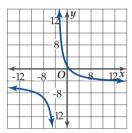
تكون الدالة متصلة إذا لم يكن في تمثيلها البياني أي انقطاع أو قفزة.

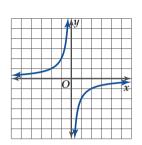

xمتصلة لجميع قيم f(x)

aca الاتصال القابل للإزالة (removable discontinuity)

نقاط عدم اتصال قابلة للإزالة تحدث غالبًا عندما يكون بين بسط ومقام الدالة النسبية عوامل مشتركة.

average rate of change) متوسط معدل التغير


متوسط معدل التغير بين نقطتين على منحنى الدالة f(x) هو ميل المستقيم المار بهاتين النقطتين.



اختبار سريع

استعمل التمثيل البياني لوصف سلوك طرفي التمثيل البياني لكل دالة

$$m(x) = \frac{7 - 10x}{2x + 7}$$
 (2 $q(x) = -\frac{2}{x}$ (1

ن قطعة x وقطعة بالريال لإنتاج x قطعة من عدل التكلفة بالريال لإنتاج منتج ما باستعمال الدالة 1200 $\frac{1700}{x} + 1200$ منتج ما باستعمال الدالة الدالة باستعمال التمثيل البياني للحاسبة البيانية عندما تقتر ب α من موجب مالانهاية.

،
$$f(x) = -2x^3 - 5x^2 + 6$$
 أوجد متوسط مُعدّل تغيّر الدالة (4 $[-4, -1]$

أوجد معادلات خطوط التقارب الرأسية والأفقية (إن وجدت) لكل دالة مما يأتي: $h(x) = \frac{2x^2 - 8}{x - 10} \quad \textbf{(6} \qquad \qquad f(x) = \frac{4x^2}{2x^2 + 1} \quad \textbf{(5}$

$$h(x) = \frac{2x^2 - 8}{x - 10}$$
 (6

$$g(x) = \frac{x^2 - 16}{(x - 2)(x + 4)}$$
 (8 $f(x) = \frac{(x - 1)(x + 5)}{(x + 2)(x - 4)}$ (7

أوجد الحدود الأربعة التالية في كل متتابعة مما يأتي:

$$5, -1, -7, -13, \dots$$
 (10 $8, 3, -2, -7, \dots$ (9

$$-28, -21, -14, -7, \dots$$
 (12 5, $-10, 20, -40, \dots$ (11

$$5, -10, 20, -40, \dots$$
 (

فيما سنقى

درستُ تقدير النهايات لتحديد اتصال الدالة

وسلوك طرفى تمثيلها

البياني. (مهارة سابقة)

أقدر نهاية الدالة عند قيم

 أقدر نهاية الدالة عند المالانهاية .

المضرداتين

one-sided limit

النهاية من جهتين two-sided limit

النهاية من جهة واحدة

to Marie Marie

تقدير النهايات بيانيًا

Estimating Limits Graphically

هل هناك نهايات للأرقام المسجَّلة في المسابقات الرياضية لا يمكن تجاوزها؟ لقد كان الرقم القياسي المسجَّل في دورة الألعاب المقامة في بكين عام 2008 م لمسابقة الوثب بالزانة m 5.05. ويمكن استعمال الدالة:

يت تم تسجيله في
$$f(x) = \frac{5.334}{1 + 62548.213(2.7)^{-0.129x}}$$

هذه الرياضة للأعوام بين 1996 م و2008 م، حيث x عدد السنوات منذ عام 1900 م، يمكنك استعمال نهاية هذه الدالة عندما تقترب x من المالانهاية؛ للتنبؤ بأكبر رقم يمكن تسجيله.

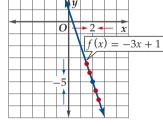
- إيجاد معادلة مماس منحنى دالة عند نقطة واقعة عليه.
- إيجاد مساحة المنطقة الواقعة بين التمثيل البياني لدالة والمحور x. وتُعدُّ مفاهيم النهايات أساسية لحل هاتين المسألتين.

تعلمت سابقًا أنه إذا اقتربت قيم f(x) من قيمة وحيدة Lكلما اقتربت قيم x من العدد c من كلا الجهتين ، فإن نهاية x عندما $\lim_{x \to \infty} f(x) = L$ من x من x من x وتكتب على الصورة

يمكنك تطبيق مفهوم النهاية لتقدير نهاية f(x) عندما تقترب x من العدد c ؛ أي $\lim_{x \to c} f(x)$ ، وذلك من خلال تمثيل الدالة بيانيًّا، أو إنشاء f(x) جدولٍ لقيم

مـثال 1

قدِّر (3x+1) التمثيل البياني، ثم عزِّز إجابتك باستعمال جدول قيم. $\lim_{x\to 2} (-3x+1)$


تقدير النهاية (النهاية تساوي قيمة الدالة)

y = -3x+1بيانيًّا؛ مثّل الدالة الخطية y = -3x+1بيانيًّا باستعمال النقطتين (0, 1).

يُبيّن التمثيل البياني للدالة 1 + 3x + 1، أنه كلما اقتربت x من العدد 2 ،

 $\lim_{x \to 2} (-3x + 1) = -5$

التعزيز عدديًا: كوّن جدولًا لقيم f(x)، وذلك باختيار قيم x القريبة من العدد 2 من كلا الجهتين.

	2	قترب من	-	x—— تقترب من 2			
\boldsymbol{x}	1.9	1.99	1.999	2	2.001	2.01	2.1
f(x)	-4.7	-4.97	-4.997		-5.003	-5.03	-5.3

، -5 يبيِّن نمط قيم f(x) أنه كلما اقتربت x من العدد 2 من اليمين أو من اليسار، فإن قيم وأرب من العدد xوذلك يعزِّز تُحليلنا البياني.

🗹 تحقق من فهمك

قدِّر كل نهاية مما يأتي باستعمال التمثيل البياني، ثم عزِّز إجابتك باستعمال جدول قيم. $\lim_{x \to -3} (1 - 5x)$ (1A $\lim_{x \to 1} (x^2 - 1)$ (1B)

👣 تاريخ الرياضيات

ثابت بن قرة (288-△221) من أوائل من فكروا بعلم التفاضل والتكامل، حيث أوجد حجم الجسم الناتج عن دوران القطع المكافئ

حول محوره.

في المثال 1 ، لاحظ أن $\lim_{x\to 0} (-3x+1)$ هي نفسها $\int_{0}^{\infty} f(2)$ ، إلا أن نهاية الدالة لا تساوي دائمًا قيمة الدالة.

إرشاد تقنى

لإنشاء جدول باستعمال الحاسبة البيانية

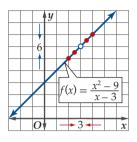
TI-nspire ، أدخل الدالة إلى الحاسبة باستعمال قائمة

酮 ، ثم اختيار الجدول

بالضغط على $\frac{1}{1}$. ثم اكتب قيم x للاقتراب من قيمة

تقدير النهاية (النهاية لا تساوي قيمة الدالة)

قدِّر $\frac{x^2-9}{x-3}$ باستعمال التمثيل البياني، ثم عزِّز إجابتك باستعمال جدولِ قيم.


التحليل بيانيًّا:

مـثال 2

مجال الدالة {3}-R

يُبيِّن التمثيل البياني للدالة $\frac{x^2-9}{x-3}$ المجاور، أنه كلما اقتربت x من العدد x ، فإن قيمة x المقابلة لها تقترب من العدد x ، فإن قيمة x المقابلة لها تقترب من العدد x ، فإن أن يامكاننا تقدير أن:

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$$

التعزيز عدديًا:

كوّن جدولًا لقيم f(x)، وذلك باختيار قيم x القريبة من العدد x من كلا الجهتين.

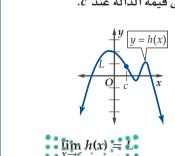
	نقترب مر	i x					
x	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)	5.9	5.99	5.999		6.001	6.01	6.1

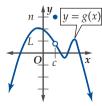
يُبيّن نمط قيم f(x)، أنه كلما اقتربت قيم x من العدد x ، فإن قيم x من العدد x ، وذلك يعزّز تحليلنا البياني.

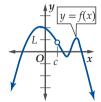
تحقق من فهمك

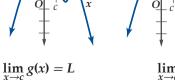
قدِّر كل نهاية مما يأتي باستعمال التمثيل البياني، ثم عزِّز إجابتك من خلال جدول قيم.

$$\lim_{x \to 5} \frac{x^2 - 4x - 5}{x - 5}$$
 (2B
$$\lim_{x \to -2} \frac{x + 2}{x^2 - 4}$$
 (2A)


في المثال 2 ، لاحظ أن قيم f(x) تقترب من العدد 6 عند اقتراب قيم x من العدد 3، على الرغم من أن f(x) في المثال 2 ، لاحظ أن قيم f(x) عند معرّفة عندما f(x) وهذه الملاحظة توضّح مفهومًا مهمًّا في النهايات.


عدم اعتماد النهابة على قيمة الدالة عند نقطة


التعبير اللفظي: لا تعتمد نهاية f(x) عندما تقترب x من العدد c على قيمة الدالة عند c


الأمثلة:

مفهوم أساسي

$$\lim_{x \to c} f(x) = L$$

h(c) = L

g(c) = n

غير معرفة f(c)

Ministry of Education

إن النهاية عند عدد لا تعني قيمة الدالة عند ذلك العدد، وإنما قيمة الدالة عندما تقتر بx من ذلك العدد. x

c من x عندما تقترب f(x) عندما نقدّ النهاية باستعمال التمثيل البياني أو جدول القيم ، فإننا نبحث عن قيمة والنهاية باستعمال التمثيل البياني أو جدول القيم ، فإننا نبحث عن قيمة f(x)من كلا الجهتين. ويمكننا إيجاز وصف سلوك التمثيل البياني عن يمين عدد أو عن يساره بمفردة النهاية من جهة واحدة.

تنبيه

النهاية من اليمين والنهاية من اليسار للدالة

لمناقشة النهاية من اليمين لدالة عند c يجب أن نضمن أن الدالة معرّفة على يمين C على فترة.(c, b) ولمناقشة النهاية من اليسار لدالة عند c يجب أن نضمن أن الدالة معرّفة على يسار c على فترة (a, c).

إرشادات للدراسة

اليسار ومن اليمين غير متساويتين، فإننا نقول: إن

النهاية غير موجودة.

وصف النهاية إذا كانت النهايتان من

مضهوم أساسي النهابات من جهة واحدة

النهامة من الممين

يدا اقتربت قيم f(x) من قيمة وحيدة إذا اقتربت أيدا اقتراب قيم x من العدد c من اليمين، فإن:

وتقرأ:
$$\lim_{x \to c^+} f(x) = L_1$$

 L_2 نهایة f(x) عندما تقترب x من c من الیمین هی L_1 نهایة f(x) عندما تقترب x من c من الیسار هی

اقتراب قيم x من العدد c من اليسار، فإن:

: ا
$$\lim_{x \to c^-} f(x) = L_2$$
 ، وتُقرأ

النهائة من النسار

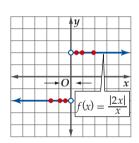
اذا اقتربت قيم f(x) من قيمة وحيدة إذا ا

يمكننا باستعمال هذين التعريفين إيجاز ما تعنيه مفردة النهاية من جهتين ، وما يعنيه كونها موجودة.

مفهوم أساسي النهابة عند نقطة

تكون نهاية f(x) موجودة عندما تقترب x من c ، إذا وفقط إذا كانت النهايتان من اليمين واليسار موجودتین و متساویتین، أي أنه:

$$\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L$$
 $\lim_{x \to c} f(x) = L$ إذا وفقط إذا كان

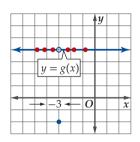

تقدير النهاية من جهة واحدة ومن جهتين مـثال 3

قدِّر إن أمكن كلُّا من النهايات الآتية باستعمال التمثيل البياني للدالة:

$$\lim_{x \to 0^{-}} \frac{|2x|}{x}, \lim_{x \to 0^{+}} \frac{|2x|}{x}, \lim_{x \to 0} \frac{|2x|}{x}$$
 (a : يُبيّن التمثيل البياني للدالة

$$\lim_{x \to 0^{-}} \frac{|2x|}{x} = -2$$
 , $\lim_{x \to 0^{+}} \frac{|2x|}{x} = 2$

 $\lim_{x \to 0} \frac{|2x|}{x}$ غير موجودة.



$$g(x) = \begin{cases} 4, & x \neq -3 \\ -2, & x = -3 \end{cases} \sim \lim_{x \to -3^{-}} g(x), \lim_{x \to -3^{+}} g(x), \lim_{x \to -3} g(x)$$
 (b)

يُبيّن التمثيل البياني للدالة g(x) أن:

$$\lim_{x \to -3^{-}} g(x) = 4 \qquad , \qquad \lim_{x \to -3^{+}} g(x) = 4$$

وبما أن النهايتين من اليسار ومن اليمين متساويتان، فإن $\lim_{x \to -3} g(x)$ موجودة وتساوى 4.

🚺 تحقق من فهمك

قدِّر إن أمكن كلَّا من النهايات الآتية إذا كانت موجودة:

: ميث:
$$\lim_{x \to -2^{-}} g(x)$$
, $\lim_{x \to -2^{+}} g(x)$, $\lim_{x \to -2} g(x)$ (3B) ميث: $\lim_{x \to 1^{-}} f(x)$, $\lim_{x \to 1^{+}} f(x)$, $\lim_{x \to 1} f(x)$ (3A)

$$g(x) = \begin{cases} -0.5x + 2 & , & x < -2 \\ -x^2 & , & x \ge -2 \end{cases}$$
 $f(x) = \begin{cases} x^3 + 2 & , & x < 1 \\ 2x + 1 & , & x \ge 1 \end{cases}$

2021 - 1443

قراءة الرياضيات

السلوك غير المحدود f(x) تعنى زيادة أو نقصان بصورة غير محدودة عندما أنه باختيار قيمة $x \rightarrow c$ c قريبة من c بالقدر الذي نريد، فإنه يمكننا الحصول على قيمة كبيرة f(x) بالقدر الذي نريد، c وكلما كانت x قريبة من

. كانت |f(x)| أكبر

تنبيه(

العبارتين

النهايات غير المحدودة

من الضروري أن نفهم أن

 $\lim_{x\to 0^+} f(x) = \infty$

غير موجودة، إذ لا يمثل

الرمزان∞ و ∞– عددين

هما فقط وصف للحالة التي

 $\lim_{x \to 0^{-}} f(x) = -\infty ,$

 $\lim_{x\to 0} f(x)$ بسببها

تساوي النهايتين من اليسار واليمين؛ إذ من الممكن أن تزداد قيم f(x) بشكل غير محدود عند اقتراب قيم x من c، وفي هذه الحالة نشير إلى النهاية بالرمز ∞ ، أما إذا تناقصت قيم f(x) بشكل غير مُحدود عند اقتراب قيم x من x ، فإننا نشير $-\infty$ إلى النهاية بالرمز

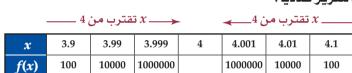
النهايات والسلوك غير المحدود مـثال 4 قدِّر إن أمكن - كل نهاية مما يأتي إذا كانت موجودة:

 $\lim_{x\to 4} \frac{1}{(x-4)^2}$ (a

المجاور أن: يُبيّن التمثيل البياني للدالة $f(x) = \frac{1}{(x-4)^2}$ المجاور أن:

إن عدم مقدرتنا على إيجاد قيمة نهاية للدالة f كعدد حقيقي عند الاقتراب من نقطة ثابتة ليس ناتجًا بالضرورة عن عدم

$$\lim_{x \to 4^{-}} \frac{1}{(x-4)^{2}} = \infty \qquad , \qquad \lim_{x \to 4^{+}} \frac{1}{(x-4)^{2}} = \infty$$


فكلما اقتربت قيم x من العدد 4 ، ازدادت قيم f(x) بشكل غير محدود،

وبما أن كلًا من النهايتين من اليسار ومن اليمين∞. لذا فإن

 $\lim_{x \to 4} \frac{1}{(x-4)^2}$ لا تساوي عددًا حقيقيًّا، إلا أنه وبسبب كون كلتا

. $\lim_{x\to 4} \frac{1}{(x-4)^2} = \infty$ النهايتين ∞ ، فإننا نصف سلوك f(x) عند العدد 4 بكتابة

التعزيز عدديًا:

يُبيّن نمط قيم f(x) أنه كلما اقتربت قيم x من العدد 4 من اليسار أو من اليمين ، فإن قيم f(x) تزداد بشكل غير محدود، وذلك يعزِّز تحليلنا البياني.

$\lim_{x\to 0}\frac{1}{x}$ (b

المجاور أن: $f(x) = \frac{1}{x}$ المجاور أن: يُبيّن التمثيل البياني للدالة

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty \qquad , \qquad \lim_{x \to 0^+} \frac{1}{x} = \infty$$

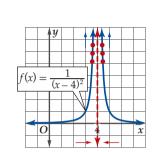
فكلما اقتربت قيم x من العدد 0 من اليسار ، قلَّت قيم f(x) بشكل غير

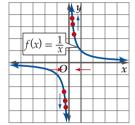
محدود، في حين تزداد قيم f(x) كلما اقتربت قيم x من العدد 0 من اليمين.

إن كلتا النهايتين من اليسار واليمين غير متساويتين. لذا فإن $\frac{1}{x}$ غير

موجودة ، لذلك لا يمكننا وصف سلوك الدالة عندما x=0 بعبارة واحدة ، بمعنى أنه لا يمكن أن

نكتب $\infty = \frac{1}{x}$ ، وذلك بسبب سلوك الدالة غير المحدود من اليمين واليسار . التعزيز عدديًا:

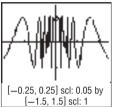

	0	قترب من	-	~ _0,	نقترب من	i x	
x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)	-10	-100	-1000		1000	100	10


يُبيّن نمط قيم f(x) أنه كلما اقتربت قيم x من العدد 0 من اليسار أو من اليمين ، فإن قيم f(x) إما أن تنقص أو تزداد بشكل غير محدود، وذلك يعزز تحليلنا البياني.

🚺 تحقق من فهمك

قدِّر إن أمكن كل نهاية مما يأتي إذا كانت موجودة:

$$\lim_{x \to 0} -\frac{2}{x^4}$$
 (4B
$$\lim_{x \to 3} \frac{x^2 - 4}{x - 3}$$
 (4A)


وزارة التعليم Ministry of Education 2021 - 1443

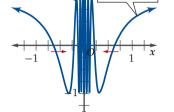
لا تكون النهاية موجودة أيضًا عندما تتذبذب قيم f(x) بين قيمتين مختلفتين باقتراب قيم x من العدد x

إرشاد تقني

التذبذب اللانهائي

خاصية تتبع المسار في الحاسبة البيانية تفيد غالباً في توقع قيمة النهاية للدالة، إلا أنه لا يمكنك الاعتماد عليها دائمًا. فهي تعتمد على عدد محدود من النقاط في تمثيل المنحنى، كما في المثال 5 المبيَّن تمثيلة أدناه.

فالتمثيل بالحاسبة البيانية لم يظهر أن للدالة عددًا لا نهائيًّا في التذبذبات بالقرب من الصفر.


النهايات والسلوك التذبذبي

قدِّر $\lim_{x\to 0} \cos \frac{1}{x}$ إذا كانت موجودة.

يُبيِّن التمثيل البياني للدالة $f(x)=\cos\frac{1}{x}$ المجاور أن قيم f(x) تتذبذبُ بشكل مستمر بين العددين 1-i كلما اقتربت قيم x من العدد 0 ، مما يعني أنه لأي قيمة x_1 قريبة من الصفر ، بحيث 1-i وبالمثل لأي قيمة قريبة قريبة حدًّا من الصفر مثل x_2 ، بحيث $x_1=-i$ ، وبالمثل لأي قيمة قريبة مثل $x_1=-i$ ، وبالمثل المثل المثل

قريبة جدا من الصفر مثل x_2 ، بحيث $f(x_2)=-1$ ، وبالمثل لاي قيمة قريبة من الصفر x_3 ، بحيث $f(x_3)=-1$ ، يمكنك إيجاد قيمة مثل x_4 قريبة جدًّا من الصفر ، بحيث $f(x_4)=1$.

أي أن $\lim_{x\to 0} \cos\frac{1}{x}$ غير موجودة.

🗹 تحقق من فهمك

مـثال 5

قدِّر كل نهاية مما يأتي إذا كانت موجودة:

 $\lim_{x \to 0} (x^2 \sin x)$ (5B $\lim_{x \to 0} \sin \frac{1}{x}$ (5A

نلخُّص فيما يأتي أهم ثلاثة أسباب تجعل نهاية الدالة عند نقطة غير موجودة.

ملخص المفهوم أسباب عدم وجود نهاية عند نقطة

تكون $\lim_{x \to c} f(x)$ غير موجودة في الحالات الآتية:

- عندما تقترب قيم f(x) من قيمتين مختلفتين عند اقتراب قيم x من العدد c من اليسار ومن اليمين.
 - عندما تزداد قيم f(x) بشكل غير محدود عند اقتراب قيم x من العدد c من اليسار وتتناقص قيمها بشكل غير محدود عند اقتراب x من العدد c من اليمين، أو العكس.
 - . c عندما تتذبذب قيم x من العدد مختلفتين عند اقتراب قيم من العدد •

تقدير النهاية عند المالانهاية: درست فيما سبق استعمال النهايات لوصف سلوك f(x) عندما تقترب قيم x من عدد ثابت c ، و تستعمل النهايات أيضًا لوصف سلوك طرفي التمثيل البياني للدالة. وهو سلوك الدالة عند ازدياد أو نقصان قيم x بشكل غير محدود. وفيما يأتي ملخّص لرموز هذه النهايات.

مفهوم أساسي النهايات عند المالانهاية

- إذا اقتربت قيم f(x) من عدد وحيد L_1 عند ازدياد قيم x بشكلٍ غير محدود، فإن: L_1 عندما تقترب قيم L_1 من موجب مالانهاية هي L_1 « L_1 عندما تقترب قيم L_1 من موجب مالانهاية هي عندما تقترب قيم L_1
- اذا اقتربت قيم f(x) من عدد وحيد L_2 عند نقصان قيم x بشكل غير محدود، فإن: $\lim_{x\to -\infty} f(x) = L_2$ عندما تقترب قيم $\lim_{x\to -\infty} f(x) = L_2$ وتُقرأ « نهاية $\lim_{x\to -\infty} f(x) = L_2$

درست سابقًا أنه إذا اقتربت قيم الدالة من ∞ أو ∞ عند اقتراب قيم x من عدد ثابت c ، فإن ذلك يعني وجود خط تقارب رأسي للدالة، كما درست أن خط التقارب الأفقي يحدث عندما تقترب قيم الدالة من عدد حقيقي كلما اقتربت قيم x من ∞ أو ∞ ، بمعنى:

- اً أو كليهما. x=c هو خط تقارب رأسي للدالة f ، إذا كانت $\infty\pm\infty=\pm\infty$ أو 1 أو 1 هو خط تقارب رأسي للدالة 1 ، إذا كانت 1
- Manustry of Lowenbon $\lim_{x \to \infty} f(x) = c$ أو $\lim_{x \to \infty} f(x) = c$ المستقيم y = c هو خط تقارب أفقي للدالة f ، إذا كانت f عادت المستقيم f(x) = c

تقدير النهاية عند المالانهاية

مـثال 6

قدِّر كل نهاية مما يأتي إذا كانت موجودة:

$\lim_{x\to\infty}\frac{1}{x}$ (a

المجاور أن $f(x)=\frac{1}{x}$ المجاور أن التحليل بيانيًا: يُبيّن التحثيل البياني للدالة $f(x)=\frac{1}{x}$ المجاور أن التحدد 0. f(x) من العدد 0.

التعزيز عدديًا:

\boldsymbol{x}	10	100	1000	10000	100000
f(x)	0.1	0.01	0.001	0.0001	0.00001

.0 يُبيّن نمط قيم f(x) أنه كلما زادت قيم x ، فإن قيم أيت نمط قيم أنه كلما أنه

$\lim_{x \to -\infty} \left(-\frac{3}{x^2} + 2 \right)$ (b)

المجاور أن المحاور أ

التعزيز عدديًّا:

x____ من ∞ — ____

:	x	-10000	-1000	-100	-10
f	(x)	1.99999997	1.999997	1.9997	1.97

.2 يُبيّن نمط قيم f(x) أنه كلما قلّت قيم x ، فإن قيم f(x) أنه كلما قلّت قيم x

$\lim_{x\to-\infty} (2.7)^x \sin 3\pi x \, , \, \lim_{x\to\infty} (2.7)^x \sin 3\pi x \, (\mathbf{c}$

التحليل بيانيًا: يُبيّن التمثيل البياني للدالة

:المجاور أن $f(x) = (2.7)^x \sin 3\pi x$

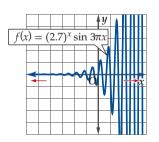
x، نكلما قلَّت قيم ، $\lim_{x\to -\infty} (2.7)^x \sin 3\pi x = 0$

f(x) مقتربة من العدد f(x)

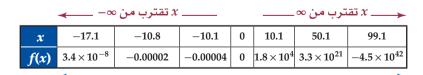
في حين يبيَّن التمثيل البياني أن $\sin 3\pi x \sin 3\pi x$ غير موجودة ، فكلما ازدادت قيم x ، تذبذبت قيم f(x) متباعدةً .

تبيه(

السلوك المتذبذب


إرشادات للدراسة

خطوط التقارب تشير النهاية في المثال 6a


الى وجود خط تقارب أفقي y = 0، وتشير النهاية في

مثال 6b إلى وجود خط تقارب أفقى y = 2.

إن التنبذب اللانهائي للدالة لا يعني بالضرورة عدم وجود النهاية عندما تقترب لا من ∞ أو ∞ − . فإذا كان التنبذب بين قيمتين مختلفتين، فالنهاية غير موجودة، أما إذا كان التنبذب متقاربًا نحو عدد معين، فالنهاية موجودة.

التعزيز عدديًا:

f(x)يتضح من نمط قيم f(x) أنه كلما قلَّت قيم x ، فإن قيم f(x) تقترب من العدد 0 ، في حين تتذبذب قيم x متباعدة كلما زادت قيم x.

Ministry of Education 2021 - 1443

تحقق من فهمك

قدِّر كل نهاية مما يأتي إذا كانت موجودة:

$$\lim_{x\to\infty} \left(\frac{1}{x^4} - 3\right)$$
 (6A)

 $\lim_{x\to\infty}\sin x \quad (6C)$

يمكنك استعمال التمثيل البياني أو جدول قيم لتقدير النهايات عند المالانهاية في كثير من المواقف الحياتية.

 $\lim_{x \to -\infty} 5^x$ (6B)

🥡 الريط مع الحياة

الأنظمة الهيدروليكية هي أحد أنظمة لقيادة أو تحريك الأجزاء المتحركة في النظام الهيدروليكي. وتستعمل في العديد من المجالات، ومنها فرامل

نقل القدرة التي تستعمل طاقة السوائل السيارات والأبواب الثقيلة وغيرها.

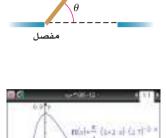
إرشاد تقني

استعمل الآلة الحاسبة

للوصول إلى شكل مناسب للتمثيل البياني للدالة في الآلة الحاسبة، يمكنك استعمال بعض ميزات الآلة. بدءًا من مفتاح 📢، يمكنك استعمال خاصية

1: إعدادات التافية

لتحديد مدى القيم وطول فترة التدريج لكل من X, y ، كذلك يمكن اختيار


لتصغير وتكبير التمثيل البياني، حتى يمكن الحصول على شكل مناسب للدالة. كما يمكن استعمال خاصية 🛝 5 تتبع المحال فتتبع

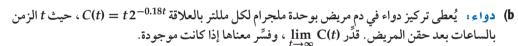
> قيم الدالة؛ مما يساعد على التوصل لتقدير قيمة النهاية.

🥡 مثال 7 من واقع الحياة

تقدير النهاية عند المالانهاية

a) هيدروليك: تستعمل نوابض لإغلاق الأبواب الثقيلة، وآلية هيدروليكية للتحكم في سرعة حركتها، إذا فتتح باب بزاوية $\frac{\pi}{4}$ ثم تُركَ لتغلقه النوابض، فإن الدالة $\theta(t) = \frac{\pi}{4}(1+2t)(2.7)^{-2t}$ تمثّل زاوية فتحته θ بعد t ثانية. قدِّر ($\lim_{t \to 0} \theta(t)$ ، وفسِّر معناها إذا كانت موجودة.

[-1, 3] scl: 0.5 by [-0.1, 0.9] scl: 0.1

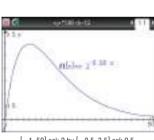

قدِّر النهاية:

مَثِّل الدالة $\theta(t)=\frac{\pi}{4}(1+2t)(2.7)^{-2t}$ بيانيًّا باستعمال الحاسبة البيانية. لاحظ أنه كلما زادت قيم t ، فإن قيم الدالة $\theta(t)$ تقترب من العدد 0. $\lim_{t \to \infty} \theta(t) = 0$ أي أن

فسِّر النتيجة:

إن قيمة النهاية 0 في هذه المسألة، تعنى أن الزاوية التي يصنعها الباب مع وضع الإغلاق مع مرور الزمن

هي 0 درجة بالراديان. بمعنى أنه بعد مرور زمن أطول ، فإن الباب سيقترب من وضع الإغلاق التام.



قدِّر النهاية:

مَثِّلِ الدالة $C(t)=t2^{-0.18t}$ بيانيًّا باستعمال الحاسبة البيانية. يتضح من التمثيل البياني أنه كلما زادت قيمة t فإن منحنى الدالة يقترب من 0، أي $\lim_{t\to\infty} C(t) = 0$ أَن

فسِّر النتيجة:

إن قيمة النهاية هي 0 ، وتعنى في هذه المسألة أنه مع مرور الزمن، فإن تركيز الدَّواء سيصبح قريبًا من الصفر في دم المريض.

[-1, 50] scl: 2 by [-0.5, 3.5] scl: 0.5

🗹 تحقق من فهمك

- t حيث $V(t)=165 \sin 120\pi t$ كهرباء: يزوّد مقبس في منطقة ما بفرق جهد كهربائي يُعطى بالعلاقة $\lim_{t\to\infty}V(t)=165 \sin 120\pi t$ ، حيث الزمن بالثواني. قدِّر $\lim_{t\to\infty}V(t)$ إذا كانت موجودة، وفسِّر معناها.
- 7B) أحياء: عند وضع عدد من ذبابات الفاكهة في وعاء يحوي حليبًا وفاكهةً وخميرةً فإن عدد الذبابات بعد t يوم يُعطى بالعلاقة $\frac{230}{1+56.5(2.7)^{-0.37t}}$ ، قدِّر P(t) ، قدِّر السال في موجودة، وفسِّر معناها.

تدرب وحل المسائل

قدِّر كل نهاية مما يأتي باستعمال التمثيل البياني، ثم عزِّز إجابتك باستعمال جدول قيم. إرشاد:" يمكنك استعمال الآلة البيانية للتمثيل البياني". (المثالان 1,2)

$$\lim_{x \to 2} \left(\frac{1}{2} x^5 - 2x^3 + 3x^2 \right)$$
 (2
$$\lim_{x \to 5} (4x - 10)$$
 (1

$$\lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4}$$
 (4
$$\lim_{x \to -2} (x^2 + 2x - 15)$$
 (3

$$\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2}$$
 (6 $\lim_{x \to 0} [5 (\cos^2 x - \cos x)]$ **(5**

$$\lim_{x \to -5} \frac{x^2 + x - 20}{x + 5}$$
 (8
$$\lim_{x \to 6} (x + \sin x)$$
 (7

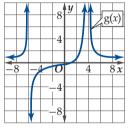
قدِّر كل نهاية مما يأتي إذا كانت موجودة: (مثال 3)

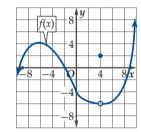
$$\lim_{x \to 0^{-}} \frac{|4x|}{x}$$
 (10
$$\lim_{x \to 0^{+}} \frac{\sin x - x}{x}$$
 (9

$$\lim_{x \to 0^{-}} \frac{|4x|}{x} \text{ (10} \qquad \lim_{x \to 0^{+}} \frac{\sin x - x}{x} \text{ (9}$$

$$\lim_{x \to 3^{-}} \frac{x^{2} - 5x + 6}{x - 3} \text{ (12} \qquad \lim_{x \to 0} \frac{2x^{2}}{|x|} \text{ (11}$$

$$\lim_{x \to -2} \frac{x^2 + 5x + 6}{|x + 2|}$$
 (14
$$\lim_{x \to -\frac{1}{2}^-} \frac{|2x + 1|}{x}$$
 (13

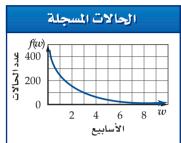

$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$$
 (16
$$\lim_{x \to 0^-} (\sqrt{-x} - 7)$$
 (15


$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$$
 (16
$$\lim_{x \to 0^-} (\sqrt{-x} - 7)$$
 (15
$$\lim_{x \to -1} \frac{|x + 1|}{x^2 - 1}$$
 (18
$$\lim_{x \to 0} \frac{|3x|}{2x}$$
 (17

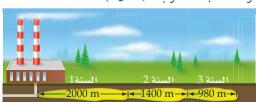
$$\lim_{x \to 0} f(x) , f(x) = \begin{cases} x - 5 , & x < 0 \\ x^2 + 5 , & x \ge 0 \end{cases}$$
 (19)

$$\lim_{x \to 0} f(x) , f(x) = \begin{cases} -x^2 + 2 , & x < 0 \\ \frac{2x}{x} , & x \ge 0 \end{cases}$$
 (20)

استعمل التمثيل البياني لتقدير كل نهاية مما يأتي إذا كانت موجودة: (الأمثلة 4-1)


 $\lim_{x \to -4} f(x)$ (21

- $\lim_{x \to 4} g(x)$ (22)
- $\lim_{x \to 4} f(x)$ (23) $\lim_{x \to -6} g(x)$ (24)
- قدِّر كل نهاية مما يأتي إذا كانت موجودة: (الأمثلة 6-4)
- $\lim_{x \to 6} \frac{5}{(x-6)^2}$ (28 $\lim_{x \to 5} \frac{x^2}{x^2 10x + 25}$ (27
- $\lim_{x \to \infty} \frac{x^2 + x 22}{4x^3 13}$ (30 $\lim_{x \to -\infty} (x^5 7x^4 4x + 1)$ (29


- $\lim_{x \to -\infty} \frac{3^x + 3^{-x}}{3^x 3^{-x}}$ (32)
 - $\lim_{x \to 0} x^2 \cos \frac{1}{x}$ (34)
 - $\lim_{x\to 0} \frac{\sin|x|}{x}$ (33)

 $\lim_{x \to \infty} x \cos x$ (31

35) دواء: تم توزيع لقاح للحدِّ من عدوى مرض ما. ويُبيّن التمثيل البياني أدناه عدد الحالات المصابة بالمرض بعد w أسبوع من توزيع اللقاح. (مثال 7)

- . $\lim_{w \to 3} f(w)$ ، $\lim_{w \to 1} f(w)$ استعمل التمثيل البياني لتقدير (a
- استعمل التمثيل البياني لتقدير $\lim_{w \to \infty} f(w)$ إذا كانت موجودة،
- 36) برامج تلفزيونية: يُقدَّر عدد مشاهدي أحد البرامج التلفزيونية اليومية بالدالة 12 $d = 12(1.25012)^d$ ، حيث d رقم اليوم منذ أول يوم للبرنامج. (مثال 7)
 - $0 \le d \le 20$ مَثِّل الدالة f(d) بيانيًّا في الفترة (a
 - b) ما عدد مشاهدي البرنامج في اليوم: الخامس، العاشر، العشرين، بعد شهرين(d = 60)؟
 - قدِّر $\lim_{d\to\infty} f(d)$ إذا كانت موجودة، وفسِّر النتيجة.
 - 37) كيمياء: تتسرَّب مادة سامة من أنبوب غاز تحت الأرض كما في الشكل أدناه. ويعبَّر عن المسافة الأفقية بالأمتار التي تقطعها المادة المتسرِّبة بالدالة $t \geq 1$ حيث $t = 2000(0.7)^{t-1}$ حيث $t \geq 1$ عدد السنوات منذ بدء التسرُّب. (مثال 7)

- $1 \leq t \leq 1$ مَثِّل باستعمال الآلة البيانية الدالة بيانيًّا في الفترة (a
- استعمل التمثيل البياني وخاصية تتبع المسار في الحاسبة البيانية لا يجاد قيم t=5,10,15
 - . $\lim_{t \to \infty} d(t)$ استعمل التمثيل البياني لتقدير (c
- d) هل من الممكن أن تصل المادة المسرِّبة لمستشفى يقع على بعد $\frac{a_1}{1-r}$ من موقع التسريب؟ تذكَّر أن مجموع المتسلسلة الهندسية غير المنتهية هو $\frac{a_1}{1-r}$. 2021 - 1443

للدالة الممثَّلة بيانيًّا أدناه، قدِّر كل نهاية مما يأتي إذا كانت موجودة:

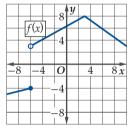

$$\lim_{x \to 0^+} f(x)$$
 (39)

$$\lim_{x \to 0} f(x)$$
 (40

$$\lim_{x \to 2^{-}} f(x)$$
 (41)

$$\lim_{x \to 2^{+}} f(x)$$
 (42)

$$\lim_{x \to 1} f(x)$$
 (43



$$\lim_{x \to 2} \frac{x^2 + x}{x^2 - x - 2}$$
 (45
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 2x + 1}$$
 (44

$$\lim_{x \to -5} \frac{|x+5|}{x+5}$$
 (47
$$\lim_{x \to 0} 3 \cos \frac{\pi}{x}$$
 (46)

مسائل مهارات التفكير العليا

48) اكتشف الخطأ: قال على: إن نهاية الدالة الممثَّلة بيانيًّا في الشكل أدناه عندما تقتر ب x من 6 هي 4 . في حين قال محمد: إنها 3. هل أي منهما إجابته صحيحة؟ برِّر إجابتك.

- $\lim_{x \to 0} f(x)$ مسألة مفتوحة: أعطِ مثالًا على f(x)، بحيث تكون (49 مسألة مفتوحة: أعطِ مثالًا على دالة أخرى g(x) ، بحيث موجودة، و f(0) غير معرفة ، ومثالًا على دالة أخرى تكون g(0) معرفة، ولكن g(x) غير موجودة.
- تحدًّ: إذا كان $f(x) = \frac{x^2 + 1}{x 1}$, $g(x) = \frac{x + 1}{x^2 4}$ فقدًر كلًّا من (50) : وإذا كانت h(x), j(x) كثيرتي حدود بحيث النس النساء وإذا كانت النساء وإذا كانت النساء والنساء وا ب القول عن $\frac{j(x)}{h(x)}$ ؛ فماذا يمكنك القول عن h(a) = 0 , $j(a) \neq 0$
- 51) تبرير: حَدِّد ما إذا كانت العبارة الآتية صحيحة دائمًا أو صحيحة أحيانًا أو غير صحيحة أبدًا. برِّر إجابتك.

$$\lim_{x\to c} f(x) = L$$
 إذا كان $f(c) = L$ ، فإن

52) مسألة مفتوحة: مَثِّل بيانيًّا دالة تحقق كلًّا مما يأتي: دة. $\lim_{x\to 2} f(x)$ ، $\lim_{x\to 0} f(x) = -3$, f(0) = 2 , f(2) = 5

53) تحدً : قدِّر كلَّا من النهايات الآتية للدالة f إذا كانت موجودة:

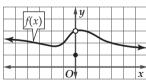
$$f(x) = \begin{cases} 2x + 4 & , & x < -1 \\ -1 & , & -1 \le x \le 0 \\ x^2 & , & 1 < x \le 2 \\ x - 3 & , & x > 2 \end{cases}$$

$$\lim_{x \to 2^+} f(x)$$
 (c $\lim_{x \to 0} f(x)$ (b $\lim_{x \to -1} f(x)$ (a

54) اكتب: من خلال ما لاحظته في حل التمارين، وضّح طريقتك لتقدير نهاية دالة متصلة.

مراجعة تراكمية

- **55)** أثبت صحة المتطابقة. (مهارة سابقة) $\sin\theta \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\cot\theta}\right) = \cos^2\theta$
- **56)** حدِّد ما إذا كانت الدالة الآتية متصلة عند قيم x المعطاة. برِّر إجابتك باستعمال اختبار الاتصال، وإذا كانت الدالة غير متصلة، فحدِّد نوع $h(x) = \frac{x^2 - 25}{x + 5}$ عدم الاتصال: لا نهائي، قفزي، قابل للإزالة
 - أو جد متو سط مُعدّل تغير أو $f(x) = \sqrt{x-6}$ أو جد متو سط مُعدّل تغير [8, 16]. (مهارة سابقة)


أوجد قياس الزاوية θ بين المتجهين u, v في كلِّ مما يأتي: (الدرس 1-5)

$$\mathbf{u} = \langle 2, 9, -2 \rangle, \mathbf{v} = \langle -4, 7, 6 \rangle$$
 (58)

$$m = 3i - 5j + 6k$$
, $n = -7i + 8j + 9k$ (59

تدريب على اختبار

(60) باستعمال التمثيل البياني للدالة y = f(x) أدناه، ما قيمة $\lim_{x\to 0} f(x)$ (إن وجدت)؟

0 **A**

- D النهاية غير موجودة 1 **B**
 - (61) إذا كانت $\frac{1}{x^2} = \frac{1}{x^2}$ وكانت العبارات:
 - نقطة عدم اتصال لا نهائي. ال نقطة عدم اتصال قفزى.
 - الا نقطة عدم اتصال قابل للإزالة.

I A فقط

I , III **B**

فأيٌّ مما يأتي يصف التمثيل البياني لمنحنى الدالة (g(x)؟

II C فقط

Ministry of Education

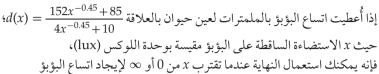
2021 - 1443

حساب النهايات جبريًّا

Evaluating Limits Algebraically

فنما سنقل

درست كيفية تقدير النهايات بيانيًّا وعدديًّا. (الدرس 1-4)


4 2 3 1 9

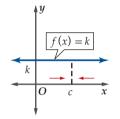
- أجدُ نهايات دوال كثيرات الحدود والدوال النسبية عند قيم محددة.
- أجدُ نهايات دوال كثيرات الحدود والدوال النسبية عند المالانهاية.

المضوداتين

التعويض المباشر direct substitution الصيغة غير المحددة indeterminate form

لماذا ؟

فإنه يمكنك استعمال النهاية عندما تقترب x من 0 أو ∞ لإيجاد اتساع البؤبؤ عندما تكون الاستضاءة في حدِّها الأدني أو الأعلى.

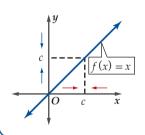

نهايات الدوال

نهايات الدوال الثابتة

مفهوم أساسي

التعبير اللفظى: نهاية الدالة الثابتة عند أي نقطة c هي القيمة الثابتة للدالة.

$$\lim_{k \to \infty} k = k$$



نهايات الدالة المحايدة

مفهوم أساسي

. c هي c التعبير اللفظي: نهاية الدالة المحايدة عند النقطة

$$\lim_{c} x = c$$

تظهر أهمية نهايات الدوال الثابتة والدالة المحايدة واضحة في خصائص النهايات.

اذا كانت $0 \le f(c) \le 0$ وَ n عددًا $\lim_{x\to \infty} \sqrt[n]{f(x)}$ زوجيًا فإن غير موجودة.

خصائص النهابات

، وكانت النهايتان $\lim_{x\to c} g(x)$, $\lim_{x\to c} g(x)$, وكانت النهايتان $\lim_{x\to c} g(x)$ ، عددين حقيقيين $\lim_{x\to c} g(x)$ موجودتين $\lim_{x\to c} g(x)$ فإن كلًا من الخصائص الآتية صحيحة:

> $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ خاصية المجموع:

> $\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$ خاصية الفرق:

> > $\lim_{x \to \infty} [k f(x)] = k \lim_{x \to \infty} f(x)$ خاصية الضرب في ثابت:

 $\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$ خاصية الضرب:

 $\lim_{x \to c} g(x) \neq 0$ ميث ، $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$ خاصية القسمة:

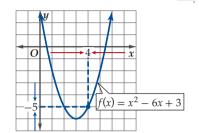
> $\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n$ خاصية القوة:

يذا كان f(x) > 0 ، إذا كان $\lim_{x \to \infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to \infty} f(x)}$ ، وذا كان $\lim_{x \to \infty} \sqrt[n]{f(x)}$ خاصية الجذر النوني:

وإذا كان n عددًا فرديًّا، فإن $\lim_{x \to c} \sqrt[n]{\lim_{x \to c} \sqrt[n]{\lim_{x \to c} f(x)}}$ وإذا كان n عددًا فرديًّا، فإن

مثال 1 استعمال خصائص النهايات

استعمل خصائص النهايات لحساب كل نهاية مما يأتي:


$$\lim_{x \to 4} (x^2 - 6x + 3)$$
 (a

$$\lim_{x \to 4} (x^2 - 6x + 3) = \lim_{x \to 4} x^2 - \lim_{x \to 4} 6x + \lim_{x \to 4} 3$$

$$= \left(\lim_{x \to 4} x\right)^2 - 6 \cdot \lim_{x \to 4} x + \lim_{x \to 4} 3$$
خاصيتا القوة والضرب في ثابت

نهایتا الدالة الثابتة والدالة المحایدة
$$=4^2-6\cdot 4+3$$

تحقق يعزّز التمثيل البياني للدالة
$$f(x) = x^2 - 6x + 3$$

$\lim_{x \to -2} \frac{4x^3 + 1}{x - 5}$ **(b**

$$\lim_{x \to -2} \frac{4x^3 + 1}{x - 5} = \frac{\lim_{x \to -2} (4x^3 + 1)}{\lim_{x \to -2} (x - 5)}$$

$$= \frac{\lim_{x \to -2} 4x^3 + \lim_{x \to -2} 1}{\lim_{x \to -2} x - \lim_{x \to -2} 5}$$

$$= \frac{4(\lim_{x \to -2} x)^3 + \lim_{x \to -2} 1}{\lim_{x \to -2} x - \lim_{x \to -2} 5}$$

$$= \frac{\lim_{x \to -2} x - \lim_{x \to -2} 5}{\lim_{x \to -2} x - \lim_{x \to -2} 5}$$

$$= \frac{4(-2)^3 + 1}{-2 - 5}$$

$$-2-5$$
 جسّط ≈ 4.4 تحقق كوّن جدولًا لقيم x التي تقترب من x من الجهتين.

4.4 من العدد f(x) من العدد x من العدد كما اقترب من العدد العدد كمن العدد

$$\lim_{x\to 3} \sqrt{8-x}$$
 (c

$$\lim_{x \to 3} (8-x) = \lim_{x \to 3} 8 - \lim_{x \to 3} x$$

$$= 8 - 3$$

$$= 5 > 0$$

$$\lim_{x \to 3} \sqrt{8-x} = \sqrt{\lim_{x \to 3} (8-x)}$$

$$= \sqrt{\lim_{x \to 3} 8 - \lim_{x \to 3} x}$$

$$= \sqrt{\lim_{x \to 3} 8 - \lim_{x \to 3} x}$$

$$= \sqrt{8-3}$$

$$= \sqrt{5}$$

تحقق من فهمك

استعمل خصائص النهايات لحساب كل نهاية مما يأتي:

$$\lim_{x \to -1} \sqrt{x+3} \text{ (1C} \qquad \lim_{x \to 2} \frac{x-3}{2x^2-x-15} \text{ (1B} \qquad \lim_{x \to 2} (-x^3+4) \text{ (1A}$$

لاحظ أن نهاية كل دالة في المثال أعلاه عندما تقترب x من c تساوي قيمة f(c). ومع أن هذه الملاحظة ليسك صلحيحة ليح في جميع الدوال ، إلا أنها صحيحة في دوال كثيرات الحدود والدوال النسبية التي مقاماتها لا تساوي صفرًا عندما 2021 م x = c. كما هو موضح فيما يأتي:

خصائص النهايات

تبقى خصائص النهايات صحيحة في حال كون النهايات من جهة واحدة، وفي حال كونها عند المالانهاية، شريطة وجود هذه النهايات.

تنبيه(

خاصية الجذر النوني الزوجي تستخدم فقط إذا كان $\lim_{x\to c} f(x) > 0$

نهايات الدوال

مفهوم أساسي

الدوال الجيدة السلوك

تُعدُّ الدوال المتصلة مثل دوال كثيرات الحدود ودالتي الجيب وجيب التمام دوال جيدة السلوك، إذ يمكن حساب نهایاتها من خلال التعويض المباشر، ويمكن إيجاد نهاية الدوال من خلال التعويض المباشر حتى وإن لم تكن الدالة جيدة السلوك على مجالها، بشرط أن تكون متصلة عند النقطة التي

تحسب عندها النهاية.

ارشادات للدراسة

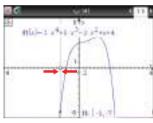
. $\lim_{x \to \infty} p(x) = p(c)$ دالة كثيرة حدود ، وكان c عددًا حقيقيًّا ، فإن p(x) دالة كثيرة حدود ، وكان

نهايات الدوال النسبية

.
$$\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}$$
 فإن $q(c) \neq 0$ هيدًا حقيقيًّا، حيث $q(c) \neq 0$ عددًا حقيقيًّا، حيث $q(c) \neq 0$ فإن $q(c) \neq 0$ دالهُ نسبية، وكان $q(c) \neq 0$ عددًا حقيقيًّا، حيث $q(c) \neq 0$ فإن $q(c) \neq 0$ دالهُ نسبية، وكان $q(c) \neq 0$ دالهُ نسبية، وكان $q(c) \neq 0$ عددًا حقيقيًّا، حيث $q(c) \neq 0$ دالهُ نسبية، وكان $q(c) \neq 0$ دالهُ د

وبشكل مختصر، فإنه يمكن حساب نهايات دوال كثيرات الحدود والدوال النسبية من خلال التعويض المباشر، شريطة ألا يساوي مقام الدالة النسبية صفرًا عند النقطة التي تُحسب عندها النهاية.

استعمال التعويض المباشر لحساب النهايات


احسب كل نهاية مما يأتي باستعمال التعويض المباشر إذا كان ممكنًا، وإلا فاذكر السبب:

$$\lim_{x \to -1} (-3x^4 + 5x^3 - 2x^2 + x + 4)$$
 (a)

بما أن هذه نهاية دالة كثيرة حدود، فيمكننا حسابها باستعمال التعويض المباشر.

$$\lim_{x \to -1} (-3x^4 + 5x^3 - 2x^2 + x + 4) = -3(-1)^4 + 5(-1)^3 - 2(-1)^2 + (-1) + 4$$
$$= -3 - 5 - 2 - 1 + 4 = -7$$

تحقق يعزِّز التمثيل البياني بالآلة البيانية للدالة
$$f(x) = -3x^4 + 5x^3 - 2x^2 + x + 4$$
 هذه النتحة.

[-4, 4] scl: 0.2 by [-8, 8] scl: 1

$\lim_{x \to 3} \frac{2x^3 - 6}{x - x^2}$ (b

بما أن هذه نهاية دالة نسبية مقامُها ليس صفرًا عندما x=3 ، فيمكننا حسابها باستعمال التعويض المباشر .

$$\lim_{x \to 3} \frac{2x^3 - 6}{x - x^2} = \frac{2(3)^3 - 6}{3 - (3)^2}$$
$$= \frac{48}{-6}$$

 $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$ (c

بما أن هذه نهاية دالة نسبية مقامها صفر عندما x=1 ، فلا يمكننا حسابها باستعمال التعويض المباشر.

$$\lim_{x \to -6} \sqrt{x+5} \ (\mathbf{d}$$

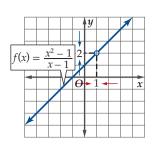
 $\lim_{\substack{x\to -6\\ \text{ val}}} \sqrt{x+5} \quad \text{(d)}$. $\lim_{\substack{x\to -6\\ \text{ val}}} \sqrt{x+5} = -6+5 = -1 < 0$ بما أن 0 > 1 = -6+5 = -1 ، فلا يمكننا حساب

🚺 تحقق من فهمك

احسب كل نهاية مما يأتي باستعمال التعويض المباشر إذا كان ممكنًا، وإلا فاذكر السبب:

$$\lim_{x \to -5} \frac{x+1}{x^2+3}$$
 (2B)

$$\lim_{x \to 4} (x^3 - 3x^2 - 5x + 7)$$
 (2A)


$$\lim_{x \to -8} \sqrt{x+6} \quad \textbf{(2D)}$$

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$
 (2C)

لنفترض أنك استعملت خاصية القسمة أو التعويض المباشر لحساب النهاية $\frac{x^2-1}{x-1}$ بشكل خاطئ كما يلي:

وهذا ليس صحيحًا؛ لأن نهاية المقام تساوي Manskry of Louration . 0 2021 - 1443

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{\lim_{x \to 1} (x^2 - 1)}{\lim_{x \to 1} (x - 1)} = \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$$

يُسمى ناتج التعويض في النهايات على الصورة $\frac{0}{0}$ **الصيغة غير المحددة** ؛ لأنه لا يمكنك تحديد نهاية الدالة مع وجود صفر في المقام، ومثل هذه النهايات قد تكون موجودة ولها قيمة حقيقية، أو غير موجودة، أو متباعدة نحو ∞ أو ∞ ، ويُبيِّن . 2 موجودة وتساوي التمثيل البياني للدالة $f(x) = \frac{x^2 - 1}{x - 1}$ أن $f(x) = \frac{x^2 - 1}{x - 1}$ موجودة وتساوي

على الرغم من أن الصيغة غير المحددة تظهر من خلال تطبيق خاطئ لخصائص النهايات، إلا أن الحصول على هذه الصيغة قد يرشدنا إلى الطريقة الأنسب لإيجاد النهاية.

إذا قمت بحساب نهاية دالة نسبية، ووصلت إلى الصيغة غير المحددة $\frac{0}{0}$ ، فبسِّط العبارة جبريًّا من خلال تحليل كل من البسط والمقام واختصار العوامل المشتركة.

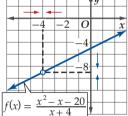
استعمال التحليل لحساب النهابات

احسب كل نهاية مما يأتى:

$$\lim_{x \to -4} \frac{x^2 - x - 20}{x + 4}$$
 (a $\lim_{x \to -4} \frac{x^2 - x - 20}{x + 4}$) ينتج عن التعويض المباشر $\frac{0}{0} = \frac{0}{-4 + 4}$ ؛ لذا فإن علينا تحليل المقدار جبريًّا، واختصار أي عوامل مشتركة بين البسط والمقام.

$$\lim_{x \to -4} \frac{x^2 - x - 20}{x + 4} = \lim_{x \to -4} \frac{(x - 5)(x + 4)}{x + 4}$$

$$= \lim_{x \to -4} \frac{(x - 5)(x + 4)}{x + 4}$$


$$= \lim_{x \to -4} \frac{(x - 5)(x + 4)}{x + 4}$$

$$= \lim_{x \to -4} (x - 5)$$

$$= (-4) - 5 = -9$$

$$\lim_{x \to 3} \frac{x-3}{x^3 - 3x^2 - 7x + 21} \quad \textbf{(b)}$$

$$\cdot \frac{3-3}{3^3 - 3(3)^2 - 7(3) + 21} = \frac{0}{0}$$

$$\lim_{x \to 3} \frac{x-3}{x^3 - 3x^2 - 7x + 21} = \lim_{x \to 3} \frac{x-3}{(x^3 - 3x^2) + (-7x + 21)}$$

$$= \lim_{x \to 3} \frac{x-3}{x^2(x-3) - 7(x-3)}$$

المجمعة في المعترك من الحدود
$$x - 3$$
 $x - 3$ $x - 3$

عند اختصار البسط بأكمله،

فإنه يصبح 1 وليس 0.

عوّض وبسّط

أعد تجميع المقام

🚺 تحقق من فهمك

احسب كل نهاية مما يأتى:

$$\lim_{x \to -2} \frac{x^3 - 3x^2 - 4x + 12}{x + 2}$$
 (3A)

$$\lim_{x \to 6} \frac{x^2 - 7x + 6}{3x^2 - 11x - 42}$$
 (3B)

ينتج عن اختصار العامل المشترك بين بسط ومقام الدالة النسبية دالة جديدة ، ففي المثال 3a ينتج عن الاختصار بين

$$f(x) = \frac{x^2 - x - 20}{x + 4}$$
, $g(x) = x - 5$

إن قيم هاتين الدالتين متساوية لجميع قيم x إلا عندما x=-4 ، فإذا تساوت قيم دالتين إلا عند قيمة وحيدة x ، فإن نهايتيهما عندما تقترب x من c متساويتان ؛ لأن قيمة النهاية لا تعتمد على قيمة الدالة عند النقطة التي تُحسبُ النهاية

.
$$\lim_{x \to -4} \frac{x^2 - x - 20}{x + 4} = \lim_{x \to -4} (x - 5)$$
 عندها؛ لذا فإن

والطريقة الأخرى لإيجاد نهايات ناتج التعويضِ فيها صيغة غير محددة ، هي إنطاق البسط أو المقام أولًا، ثم اختصار العوامل المشتركة.

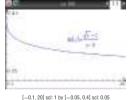
استعمال إنطاق البسط أو المقام لحساب النهايات مـثال 4

$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$$

$$\sqrt{x} - 3$$
 اضرب كلًا من البسط والمقام في $x + 3$ والذي يمثل مرافق $x - 3$ اضرب كلًا من البسط والمقام في $x + 3$ والذي يمثل مرافق $x - 9$

$$= \lim_{x \to 9} \frac{x - 9}{(x - 9)(\sqrt{x} + 3)}$$

$$=\lim_{x\to 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}$$


$$= \lim_{x \to 9} \frac{1}{\sqrt{x} + 3}$$

$$=\frac{1}{\sqrt{9}+3}$$

$$=\frac{1}{6}$$

 $f(x) = \frac{\sqrt{x} - 3}{x - 9}$ يعزِّز التمثيل البياني بالآلة البيانية للدالة

في الشكل المجاور هذه النتيجة.

🔽 تحقق من فهمك

احسب كل نهاية مما يأتى:

$$\lim_{x \to 25} \frac{x - 25}{\sqrt{x} - 5}$$
 (4A)

$$\lim_{x \to 0} \frac{2 - \sqrt{x + 4}}{x}$$
 (4B)

حساب النهايات عند المالانهاية: درست سابقًا أن لجميع الدوال الزوجية سلوك طرفي التمثيل البياني نفسه، وكذلك الدوال الفردية لها جميعًا سلوك طرفي التمثيل البياني نفسه.

مفهوم أساسي نهايات دوال القوى عند المالانهاية

لأى عدد صحيح موجب 11،

- $\lim_{n\to\infty} x^n = \infty \bullet$
- أِذَا كَانَ n عَدَدًا زُوجِيًّا. $\lim_{x \to -\infty} x^n = \infty$
- . إذا كان n عددًا فرديًا $\lim_{x\to -\infty} x^n = -\infty$

إن سلوك طرفي التمثيل البياني لدالة كثيرة الحدود هو ذاته سلوك طرفي التمثيل البياني لدالة القوة التاتجة عن الحدل الرئيس في كثيرة الحدود، وهو الحدذو القوة الكبرى، ويمكننا وصفّ ذلك أيضًا باستعمال النهايات. 1443-2021

إرشادات للدراسة

الضرب في المالانهاية

 $\lim f(x) = \infty$

تعنى أن الدالة تأخذ قيمًا موجبة ومتزايدة بشكل غير xمحدود، كلما اقتريت قيم من العدد c؛ لذا فإن ضرب هذه القيم في عدد موجب لا يغير هذا السلوك، أما ضربها في عدد سالب، فإنه يعكس إشاراتها، ويذلك تقترب النهاية من ∞ ، أي أنه إذا کان a > 0 فان: $a(\infty) = \infty$, $-a(\infty) = -\infty$

مراجعة المفردات

تذكر أن دالة المقلوب هي

دالة a(x) حيث $f(x) = \frac{1}{a(x)}$ $a(x) \neq 0$ خطیة ، و

دالة المقلوب

نهايات دوال كثيرات الحدود عند المالانهاية

إذا كانت $p(x) = a_n x^n + \ldots + a_1 x + a_0$ دالة كثيرة حدود ، فإن $\lim_{x \to \infty} p(x) = \lim_{x \to \infty} a_n x^n , \lim_{x \to -\infty} p(x) = \lim_{x \to -\infty} a_n x^n$

يمكنك استعمال هاتين الخاصيتين لحساب نهايات دوال كثير ات حدود عند المالانهاية. تذكّر أن كون نهاية الدالة ∞ أو ∞ - لا يعنى أنها موجودة، ولكنه وصف لسلوك منحناها؛ فإما أن يكون متز إيدًا بلاحدود أو متناقصًا بلا حدود.

نهايات دوال كثيرات الحدود عند المالانهاية مـثال 5

احسب كل نهاية مما يأتي:

مفهوم أساسي

$$\lim_{x \to -\infty} (x^3 - 2x^2 + 5x - 1)$$
 (a)

$$\lim_{x \to -\infty} (x^3 - 2x^2 + 5x - 1) = \lim_{x \to -\infty} x^3$$
 نهاية دالة كثيرة الحدود عند المالانهاية

$$\lim_{x \to \infty} (4 + 3x - x^2)$$
 (b)

$$\lim_{x \to \infty} (4 + 3x - x^2) = \lim_{x \to \infty} -x^2$$
$$= -\lim_{x \to \infty} x^2$$

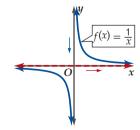
$$\lim_{x \to -\infty} (5x^4 - 3x)$$
 (c

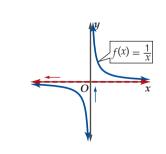
$$\lim_{x \to -\infty} (5x^4 - 3x) = \lim_{x \to -\infty} 5x^4$$
$$= 5 \lim_{x \to -\infty} x^4$$
$$= 5 \times \infty = \infty$$

$$\lim_{x \to -\infty} (5x^4 - 3x) \quad (6$$

🗹 تحقق من فهمك

احسب كل نهاية مما يأتي:


$$\lim_{x \to -\infty} (2x - 6x^2 + 4x^5) \quad \text{(5C} \quad \lim_{x \to -\infty} (4x^6 + 3x^5 - x) \quad \text{(5B} \quad \lim_{x \to \infty} (-x^3 - 4x^2 + 9) \quad \text{(5A)}$$


ولحساب نهاية دالة نسبية عند المالانهاية نحتاج إلى خصائص أخرى للنهايات.

مفهوم أساسى نهايات دالة المقلوب عند المالانهاية

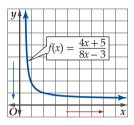
التعبير اللفظي: إن نهاية دالة المقلوب عند موجب أو سالب مالانهاية هي صفر.

$$\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0$$
 درموز:

. $\lim_{x \to +\infty} \frac{1}{x^n} = 0$ لأي عدد صحيح موجب n ، فإن نتيجة،

ويمكننا استعمال هذه الخاصية لحساب نهايات الدوال النسبية عند المالانهاية ، وذلك بقسمة كل حد في بسط ومقام لير Ministry of Education الدالة النسبية على أعلى قوة لمتغير الدالة. 2021 - 1443

نهايات الدوال النسبية عند المالانهاية


احسب كل نهاية مما يأتي إن أمكن:

$$\lim_{x\to\infty}\frac{4x+5}{8x-3}$$
 (a

$$x = \lim_{x \to \infty} \frac{4x + 5}{8x - 3} = \lim_{x \to \infty} \frac{\frac{4x}{x} + \frac{5}{x}}{\frac{8x}{x} - \frac{3}{x}}$$
 اقسم كل حد على أعلى قوة، وهي $\frac{4x + 5}{8x - 3} = \lim_{x \to \infty} \frac{\frac{4x}{x} + \frac{5}{x}}{\frac{8x}{x} - \frac{3}{x}}$ $= \lim_{x \to \infty} \frac{4 + \frac{5}{x}}{8 - \frac{3}{x}}$ $= \frac{\lim_{x \to \infty} 4 + 5 \lim_{x \to \infty} \frac{1}{x}}{\lim_{x \to \infty} 8 - 3 \lim_{x \to \infty} \frac{1}{x}}$

نهايتا الدالة الثابتة ودالة المقلوب عند المالانهاية
$$= rac{4+5\cdot 0}{8-3\cdot 0} = rac{1}{2}$$

تحقق يعزِّز التمثيل البياني للدالة
$$f(x) = \frac{4x+5}{8x-3}$$
 المجاور هذه النتيجة. 🗸

$\lim_{x \to -\infty} \frac{6x^2 - x}{3x^3 + 1}$ **(b**

$$x^3$$
 وهي قوة، وهي السم كل حد على أعلى قوة، وهي $\lim_{x \to -\infty} \frac{6x^2 - x}{3x^3 + 1} = \lim_{x \to -\infty} \frac{\frac{6x^2}{x^3} - \frac{x}{x^3}}{\frac{3x^3}{x^3} + \frac{1}{x^3}}$
$$= \lim_{x \to -\infty} \frac{\frac{6}{x} - \frac{1}{x^2}}{3 + \frac{1}{x^3}}$$

خصائص القسمة، والمجموع، والشرق، والضرب في ثابت
$$= \frac{6\lim_{x \to -\infty} \frac{1}{x} - \lim_{x \to -\infty} \frac{1}{x^2}}{\lim_{x \to -\infty} 3 + \lim_{x \to -\infty} \frac{1}{x^3}}$$
 خصائص القسمة، والمجموع، والشرق، والضرب في ثابت
$$= \frac{6 \cdot 0 - 0}{3 + 0} = 0$$
 نهايتا الدالة الثابتة ودالة المقلوب عند المالانهاية

$$\lim_{x \to \infty} \frac{5x^4}{9x^3 + 2x}$$
 (c

$$x^4$$
 اقسم کل حد علی أعلی قوة، وهي السم $\lim_{x \to \infty} \frac{5x^4}{9x^3 + 2x} = \lim_{x \to \infty} \frac{5}{\frac{9}{x} + \frac{2}{x^3}}$

خصائص القسمة، والمجموع، والضرب في ثابت
$$=rac{\lim_{x o \infty} 5}{9 \lim_{x o \infty} rac{1}{x} + 2 \lim_{x o \infty} rac{1}{x^3}}$$
 خصائص القسمة والمجموع، والضرب في ثابت $= \frac{5}{9 \cdot 0 + 2 \cdot 0} = \frac{5}{0}$

 $\lim_{x \to \infty} \frac{-3x^2 + 7}{5x + 1}$ **(6B**

وحيث إن نهاية المقام صفر، فإننا نكون قد طبقنا خطأً خاصية القسمة، إلا أننا نعلم أنه عند قسمة العدد 5 على قيم صغيرة موجبة تقترب من الصفر، فإن الناتج سيكون كبيرًا بشكلٍ غير محدود، أي أن النهاية هي ∞.

إرشادات للدراسة

نهاية الدوال النسبية

توجد ثلاث حالات عند حساب نهایات الدوال النسبیة عندما تقترب X من المالانهایة.
1) إذا كانت درجة البسط أكبر من درجة المقام، فإن النهایة إما ∞ أو ∞ —، بحسب إشارة الحد الرئیس في كل من البسط والمقام.
2) إذا كانت درجة البسط مساوية لدرجة البسط مساوية لدرجة المقام، فإن معاملي الحدین الرئیسین معاملي الحدین الرئیسین في البسط والمقام.

أقل من درجة المقام، فإن

النهاية صفر.

🚺 تحقق من فهمك

احسب كل نهاية مما يأتى:

$$\lim_{x\to-\infty}\frac{5}{x-10}$$
 (6A)

$$\lim_{x \to \infty} \frac{7x^3 - 3x^2 + 1}{2x^3 + 4x}$$
 (6C)

درست سابقًا أن المتتابعة هي دالة مجالها مجموعة من الأعداد الطبيعية، ومداها مجموعة من الأعداد الحقيقية؛ لذا فإن نهاية المتتابعة غير المنتهية هي نهاية دالة عندما $\infty \to n$. إذا كانت النهاية موجودة ، فإن قيمة هذه النهاية هي العدد الذي تقترب منه المتتابعة . فمثلًا يمكن وصف المتتابعة ... , $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ... عدد n عدد صحيح موجب. وبما أن $\lim_{n\to\infty}\frac{1}{n}=0$ ، فإن المتتابعة تقترب من الصفر.

نهايات المتتابعات مـثال 7

احسب نهاية كل متتابعة مما يأتي إن وجدت:

$$a_n = \frac{3n+1}{n+5}$$
 (a

 $\lim_{n\to\infty} \frac{3n+1}{n+5}$ أوجد أوجد تهاية المتتابعة،

$$\lim_{n \to \infty} \frac{3n+1}{n+5} = \lim_{n \to \infty} \frac{3+rac{1}{n}}{1+rac{5}{n}}$$
 اقسم كل حد على أعلى قوة، وهي $\lim_{n \to \infty} \frac{3n+1}{n+5} = \lim_{n \to \infty} \frac{3+rac{1}{n}}{1+rac{5}{n}}$ $= \frac{\lim_{n \to \infty} 3+\lim_{n \to \infty} rac{1}{n}}{\lim_{n \to \infty} 1+5\lim_{n \to \infty} rac{1}{n}}$ خصائص القسمة، والمجموع، والضرب في ثابت $\lim_{n \to \infty} 1+5\lim_{n \to \infty} rac{1}{n}$ $= rac{3+0}{1+5\cdot 0} = 3$

أي أن نهاية المتتابعة هي 3 ، بمعنى أن حدود المتتابعة تقترب من 3 .

تحقق كوّن جدولًا، واختر قيمًا متعددة لـ n.

n	1	20	40	60	80	90	100	1000	10000
an	0.6667	2.44	2.6889	2.7846	2.8353	2.8526	2.8667	2.9861	2.9986

نلاحظ أن حدود المتتابعة تقترب من العدد 3 كلما كبرت n.

$$b_n = \frac{5}{n^4} \left[\frac{n^2 (n+1)^2}{4} \right]$$
 (b)

الحدود الخمسة الأولى بصورة تقريبية هي 1.8 5, 2.813, 2.222, 1.953 . والآن أوجد نهاية المتتابعة

$$\lim_{n \to \infty} \frac{5}{n^4} \left[\frac{n^2(n+1)^2}{4} \right] = \lim_{n \to \infty} \frac{5}{n^4} \left[\frac{n^2(n^2+2n+1)}{4} \right]$$

$$= \lim_{n \to \infty} \frac{5n^4 + 10n^3 + 5n^2}{4n^4}$$

$$= \lim_{n \to \infty} \frac{5n^4 + 10n^3 + 5n^2}{4n^4}$$

$$= \lim_{n \to \infty} \frac{5 + 10 \lim_{n \to \infty} \frac{1}{n} + 5 \lim_{n \to \infty} \frac{1}{n^2}}{\lim_{n \to \infty} 4}$$

$$= \frac{5}{4} = 1.25$$

أي أن نهاية المتتابعة هي 1.25 ، بمعنى أن حدود المتتابعة تقترب من 1.25.

تحقّق كوّن جدول قيم، واختر قيمًا كبيرة لـ n . قيم b_n في الجدول أدناه مقربة إلى أقرب جزء من مئة)

— n تقترب من ∞ —

n 10 100 1000 10000 100000 b _n 1.51 1.28 1.25 1.25 1.25				<u> </u>		
b _n 1.51 1.28 1.25 1.25 1.25	n	10	100	1000	10000	100000
	b_n	1.51	1.28	1.25	1.25	1.25

$c_{n} = \frac{9}{4n^{3}} \left[\frac{n(n+1)(2n+1)}{6} \right]$ (7C)

احسب نهایة کل متتابعة مما یأتي إن وجدت:
$$b_n = \frac{2n^3}{3n+8}$$
 (7B $a_n = \frac{4}{n^2+1}$ (7A

$$a_n = \frac{4}{n^2 + 1}$$
 (7A

🗹 تحقق من فهمك

تدرب وحل المسائل

استعمل خصائص النهايات لحساب كل نهاية مما يأتي: (مثال 1)

$$\lim_{x \to -6} \frac{x^4 - x^3}{x^2}$$
 (6
$$\lim_{x \to 12} \frac{x^2 - 10x}{\sqrt{x + 4}}$$
 (5

احسب كل نهاية مما يأتي باستعمال التعويض المباشر إذا كان ممكنًا، وإلا فاذكر السبب: (مثال 2)

$$\lim_{x \to 16} \frac{x^2 + 9}{\sqrt{x} - 4}$$
 (7

$$\lim_{x \to 2} (4x^3 - 3x^2 + 10)$$
 (8)

$$\lim_{x \to 3} \frac{x^3 + 9x + 6}{x^2 + 5x + 6}$$
 (9

$$\lim_{x \to 3} \sqrt{2 - x}$$
 (10

$$\lim_{x \to 9} (3x^2 - 10x + 35)$$
 (11)

$$\lim_{x \to 10} \left(-x^2 + 3x + \sqrt{x} \right)$$
 (12)

نتحرك فيزياء: بحسب نظرية آينشتاين النسبية، فإن كتلة جسم يتحرك فيزياء: بحسب نظرية آينشتاين النسبية، فإن كتلة جسم يتحرك بسرعة v عطى بالعلاقة v عطى بالعلاقة بسرعة v على بالعلاقة بالعلاقة

بسرعة
$$v$$
 تُعطى بالعلاقة $\frac{m_0}{\sqrt{1-rac{v^2}{c^2}}}$ سرعة الضوء،

. كتلة الجسم الابتدائية أو كتلته عندالسكون m_0

أوجد m_0 ، ووضّح العلاقة بين هذه النهاية و m_0 ، ووضّح العلاقة بين العلاقة أوجد

احسب كل نهاية مما يأتي: (المثالان 4, 3)

$$\lim_{x \to 0} \frac{4x}{\sqrt{x+1} - 1}$$
 (15
$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1}$$
 (14

$$\lim_{x \to 0} \frac{2x}{3 - \sqrt{x + 9}}$$
 (17
$$\lim_{x \to -5} \frac{4x^2 + 21x + 5}{3x^2 + 17x + 10}$$
 (16

$$\lim_{x \to 6} \frac{\sqrt{x+3} - 3}{x-6}$$
 (19
$$\lim_{x \to -3} \frac{x^2 - 2x - 15}{x+3}$$
 (18

احسب كل نهاية مما يأتي: (المثالان 6, 5)

$$\lim_{x \to \infty} \frac{14x^3 - 12x}{4x^2 + 13x - 8}$$
 (23 $\lim_{x \to \infty} (10x + 14 + 6x^2 - x^4)$ (22

$$\lim_{x \to \infty} \frac{10x^4 - 2}{5x^4 + 3x^3 - 2x}$$
 (25
$$\lim_{x \to \infty} \frac{6x^3 + 2x - 11}{-x^5 + 17x^3 + 4x}$$
 (24)

يسفنج: تحتوي مادة هلامية على حيوان الإسفنج، وعند وضع المادة الهلامية في الماء، فإن حيوان الإسفنج يبدأ بامتصاص الماء $\ell(t) = \frac{105t^2}{10+t^2} + 25$ والتضخم. ويمكن تمثيل ذلك بالدالة $t^2 + 25 = \frac{105t^2}{10+t^2}$ حيث $t^2 + 25 = \frac{105t^2}{10+t^2}$ الماء. (مثال 6)

 $t = t_1$ t = t,

a) ما طول حيوان الإسفنج قبل وضعه في الماء؟

 $t \to \infty$ ما نهاية الدالة عندما (b

٥) وضِّح العلاقة بين نهاية الدالة ℓ وطول حيوان الإسفنج.

احسب نهایة کل متتابعة مما یأتی إذا کانت موجودة: (مثال 7)

$$a_n = \frac{8n+1}{n^2-3}$$
 (27)

$$a_n = \frac{-4n^2 + 6n - 1}{n^2 + 3n}$$
 (28)

$$a_n = \frac{12n^2 + 2}{6n^2 - 1}$$
 (29

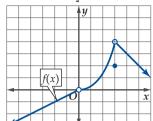
$$a_n = \frac{8n^2 + 5n + 2}{3 + 2n}$$
 (30)

$$a_n = \frac{1}{n^4} \left[\frac{n^2(n+1)^2}{4} \right]$$
 (31)

$$a_n = \frac{12}{n^2} \left[\frac{n(2n+1)(n+1)}{6} \right]$$
 (32)

احسب كل نهاية مما يأتي إذا كانت موجودة مستخدمًا التعويض المباشر لحساب النهايتين من اليمين واليسار:

$$\lim_{x \to -2} \begin{cases} x - 3, & x \le -2 \\ 2x - 1, & x > -2 \end{cases}$$
 (33)


$$\lim_{x \to 0} \begin{cases} 5 - x^2 , & x \le 0 \\ 5 - x , & x > 0 \end{cases}$$
 (34)

مرارة التعليم Ministry of Education 2021 - 1443

$$\lim_{x \to 2} \begin{cases} (x-2)^2 + 1, & x \le 2 \\ x - 6, & x > 2 \end{cases}$$
 (35)

مراجعة تراكمية

: استعمل التمثيل البياني للدالة f(x) أدناه لإيجاد كلِّ مما يأتى

 $f(-2) \cdot \lim_{x \to -2} f(x)$ (54)

$$f(0) \cdot \lim_{x \to 0} f(x)$$
 (55)

$$f(3) \cdot \lim_{x \to 3} f(x)$$
 (56

أو جد (f+g)(x)، (f+g)(x)، (f+g)(x)، لكل زوج من الدوال الآتية، ثم حدِّد مجال الدالة الناتجة: (مهارة سابقة)

$$f(x) = \frac{x}{x+1}$$
 (58)

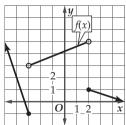
$$g(x) = x^2 - 1$$

$$f(x) = x^2 - 2x$$
 (57)
 $g(x) = x + 9$

تدريب على اختبار

- $! \lim_{h \to 0} \frac{2h^3 h^2 + 5h}{h}$ ما قيمة (59)

D غيرموجودة


4 **B**

ما القيمة التي تقترب منها $g(x)=\frac{x+\pi}{\cos{(x+\pi)}}$ عندما تقترب x من 0 ?

- $-\frac{1}{2}\pi$ **C** 0 **D**

- $-\frac{3}{4}$ **B**

 $\lim_{x\to 2^+} f(x)$ باستعمال التمثيل البياني للدالة f أدناه، ما قيمة (61

D غير موجودة

- 5 C
- 1 **B**

0 **A**

وزارة التعليم Ministry of Education 2021 - 1443

احسب كل نهاية مما يأتي، إذا كانت موجودة:

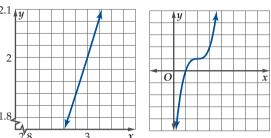
- $\lim_{x \to 0} (1 + x + 2^x \cos x)$ (38) $\lim_{x \to \infty} \frac{\sin x}{x}$ (37)
 - $\lim_{x \to 1} \frac{1 \sqrt{x}}{x 1}$ (40 $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x}$ (39)

أوجد $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ أوجد

- f(x) = 7 9x (42) f(x) = 2x - 1 (41)
- $f(x) = \sqrt{x+1}$ (44) $f(x) = \sqrt{x}$ (43)
- $f(x) = x^2 + 8x + 4$ (46) $f(x) = x^2$ (45)

47) فيزياء: يمتلك الجسم المتحرك طاقةً تُسمى الطاقة الحركية؛ لأن بإمكانه بذل شغل عند تأثيره على جسم آخر. وتُعطى الطاقة الحركية لجسم متحرك بالعلاقة v(t) سرعة ، $k(t) = \frac{1}{2}m \cdot (v(t))^2$ سرعة الجسم عند الزمن t، و m كتلته بالكيلو جرام. إذا كانت سرعة جسم لكل $v(t) = \frac{50}{1+t^2}$ لكل $v(t) = \frac{50}{1+t^2}$ يمتلكها عندما يقترب الزمن من 100s؟

مسائل مهارات التفكير العليا


- 48) برهان: استعمل خصائص النهايات؛ لإثبات أنه لأى كثيرة حدود $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ $\lim_{c} p(x) = p(c)$ فإن ، c فيقى عدد حقيقى عدد عقيقى
 - 49 برهان: استعمل الاستقراء الرياضي؛ لإثبات أنه إذا كان n فإنه لأي عدد صحيح، $\lim_{x \to \infty} f(x) = L$ $\lim_{x \to \infty} [f(x)]^n = [\lim_{x \to \infty} f(x)]^n = L^n$
 - $: a_n \neq 0$, $b_m \neq 0$ تحدًّ: احسب النهاية الآتية إذا كانت **(50** $\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0}$ (m < n, m = n, m > n إر شاد: افتر ض كلًّا من الحالات (إر شاد افتر ض كلًّا من الحالات)
- $\lim_{x \to \infty} r(x) = r(c)$ قبرير: إذا كانت r(x) دالة نسبية، فهل العلاقة (51 صحيحة أحيانًا، أو صحيحة دائمًا، أو غير صحيحة أبدًا؟ رِّر إجابتك.
- 52) اكتب: استعمل جدولًا لتنظيم خصائص النهايات، وضمَّنه مثالًا على كل خاصية.
- رالة نسبية، وأن $\frac{p(x)}{q(x)}$ دالة نسبية، وأن $\frac{p(x)}{\infty} = \frac{1}{1}$ دالة نسبية، وأن $\frac{p(x)}{q(x)}$ دالة نسبية، وأن قيمة هذه النهاية هي 1 . وضَّح سبب كونها مخطئة. وما الخطوات التي يمكن اتباعها لحساب هذه النهاية، إذا كانت مو جو دة؟

منحني.

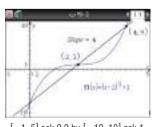
الهدف استعمال الحاسبة البيانية TI - nspire ؛ لتقدير ميل

ميل المنحني

يعتبر ميل المستقيم بوصفه معدلًا ثابتًا للتغير مفهومًا واضحًا، إلا أن الميل ليس واضحًا بالنسبة للمنحنيات بصورة عامة؛ إذ يتغير ميل المنحني عند كل نقطة عليه.

وبشكل عام فإن التمثيلات البيانية لمعظم الدوال تبدو خطيةً عند تفحُّصها على فترةٍ قصيرة جدًّا.

وبالنظر إلى القواطع المتتالية، يكون من الممكن تطبيق فكرة الميل على المنحنيات.


نشاط 1

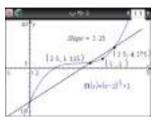
خطوط القاطع

قدّر ميل منحنى الدالة $y = (x-2)^3 + 1$ عند النقطة (2, 2).

 $y = (x-2)^3 + 1$ في $y = (x-2)^3 + 1$ في $y = (x-2)^3 + 1$ أثم احسب ميل القاطع المار بمنحنى: عندما x = 2 , x = 4 عندما

- مثّل الدالة بالضغط على 😾 🍩 ، ثم اكتب الدالة واضغط. 🧠
- حدِّد نقطتين على منحني الدالة بالضغط على مفتاح 📻 واختيار 🍑 🐧 🕶 ، ثم • 1:النقاط والمستقيمات واختيار - 2 سط على الملغ ، ثم الضغط على المنحني مرتين وستظهر نقطتان.
 - x = 2, x = 4 ظلِّل إحداثيّي x لكلا النقطتين واستبدلهما بالإحداثيين •

• ارسم القاطع المار بالنقطتين بالضغط على في واختيار المنقط المار بالنقطة والمستقيمات من اختيار أن النقاط والمستقيمات من اختيار واضغط على النقطتين ثم اضغط

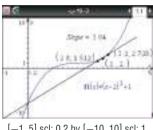

[-1, 5] scl: 0.2 by [-10, 10] scl: 1

• أوجد ميل القاطع بالضغط على ﷺ، واختيار ، ثم ﷺ ، ثم الله المسلم

، ثم أن ميله يساوي 4.

وزارة التعليم Ministry of Education 2021 - 1443

معمل الحاسبة البيانية: ميل المنحني The Slope of a Curve


[-1, 5] scl: 0.2 by [-10, 10] scl: 1

 $y = (x - 2)^3 + 1$:خطوة **2** احسب ميل القاطع المار بمنحنى عندما x = 2.5 , x = 3.5

ظلِّل إحداثيًى x لكلا النقطتين واستبدلهما بالإحداثيين x=2.5, x=3.5 فيكون ميل القاطع يساوي 3.25

 $y = (x - 2)^3 + 1$ خطوة 3 احسب ميل القاطع المار بمنحنى x = 2.8 , x = 3.2 عندما

ظلِّل إحداثيِّي x لكلا النقطتين واستبدلهما بالإحداثيين 3.04 فيكون ميل القاطع يساوى x = 2.8, x = 3.8

[-1, 5] scl: 0.2 by [-10, 10] scl: 1

خطوة 4 أوجد ميل 3 قواطع أخرى في فترات متناقصة حول النقطة (3,2).

كلّما نقص طول الفترة حول النقطة (2, 3)، فإن ميل القاطع يقترب أكثر من العدد 3؛ لذا فإن ميل منحني عند النقطة (2, 2) هو 3 تقريبًا. $y = (x-2)^3 + 1$

تمارين:

قدِّر ميل منحنى كل دالة مما يأتى عند النقطة المعطاة:

$$y = (x+1)^2, (-4, 9)$$
 (1

$$y = x^3 - 5$$
, (2, 3) (2

$$y = 4x^4 - x^2$$
, (0.5, 0) (3

$$y = \sqrt{x}$$
, (1, 1) (4)

حلِّل النتائج

- 5) حُلل: صف ما يحدث لقاطع منحنى دالة عندما تقترب نقاط التقاطع من نقطة معطاة (a, b) على المنحنى.
 - 6) خمن: صِف كيف يمكنك إيجاد القيمة الفعلية لميل منحنى عند نقطة معطاةٍ عليه.

المماس والسرعة المتجهة

Tangent Line and Velocity

فيما سنقى

درست إيجاد متوسط مُعدّل التغيّر باستعمال القاطع. (مهارة سابقة)

والانتان

- أجدُ مُعدل التغيّر اللحظى لدالة غير خطية عند نقطة بحساب ميل مماس منحنى الدالة عند تلك
 - أجدُ السرعة المتوسطة المتجهة والسرعة المتجهة اللحظية.

المماس

tangent line

مُعدل التغيّر اللحظي instantaneous rate of change

قسمة الفرق

السرعة المتجهة اللحظية

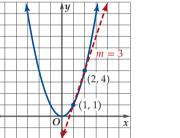
difference quotient

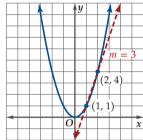
instantaneous velocity

قراءة الرياضيات

يمكن اختصار الجملة ميل

المماس لمنحنى الدالة بميل

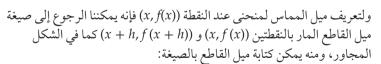

اختصارات


لماذا ؟

عندما يقفز المظلى من ارتفاع £15000 فإن سرعته في اتجاه الأرض تزداد مع مرور الزمن؛ بسبب تسارع الجاذبية الأرضية، وتستمر سرعته في الازدياد حتى يفتح مظلته عند ارتفاع 2500 ft ، أو عندما يصل إلى السرعة المتجهة الحدية، وهي السرعة المتجهة التي ينعدم عندها تسارع المظلى، ويحدث هذا عندما تصبح محصلة القوى عليه صفرًا.

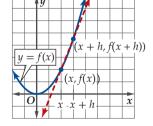
المماسات: تعلمت سابقًا أن مُعدّل تغيّر منحنى دالة غير خطية يتغير من نقطة إلى أخرى عليه، ويمكن حساب متوسط مُعدّل تغيّر الدالة غير الخطية على فترة باستعمال ميل القاطع. ففي التمثيلات البيانية أدناه للدالة

 $y=x^2$ والقاطع الذي يقطعه مارًا بالنقطة $y=x^2$ أو (2,4)، أو (1.1, 1.21)، تجد أن القاطع يتخذ أوضاعًا مختلفة يتغير خلالها مىلە.



الشكل (3)

الشكل (1)


لاحظ أنه كلما قصُر طولُ الفترة بين نقطتي التقاطع ، زادت دِقَّةُ تقريب ميل القاطع لميل المنحني في هذه الفترة. إذا واصلنا تقصير الفترة إلى درجة تكون فيها نقطتا التقاطع متطابقتين كما في الشكل (3) أعلاه، فإننا نحصل على مماس للمنحني، وهو مستقيم يتقاطع مع المنحني، ولكنه لا يعبره عند نقطة التماس. ويمثِّل ميل هذا المستقيم ميل المنحني عند نقطة التماس.

الشكل (2)

$$m = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

وتُسَمَّى هذه الصيغة قسمة الفرق.

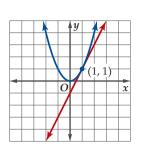
فكلما اقتربت النقطة (x+h, f(x+h)) من النقطة (x, f(x)) ؛ أي كلما اقتربت قيمة من الصفر، فإن القاطع يقترب من مماس المنحنى عند النقطة (x, f(x))؛ لذا يمكننا حساب ميل المماس h $h \to 0$ وهو مُعدل التغيّر اللحظّى للدالة عند تلك النقطة على أنه نهاية ميل القاطع عندما

مفهوم أساسي مُعدل التغيّر اللحظي

مُعدل التغيّر اللحظي للدالة f عند النقطة (x,f(x)) هو ميل المماس m عند النقطة (x,f(x)) ، ويُعطى بالصيغة $\frac{f\left(x+h\right)-f\left(x\right)}{h}$ ، بشرط أن تكون النهاية موجودة. 021 - 1443

يمكنك استعمال صيغة معدل التغيّر اللحظى لإيجاد ميل مماس منحني عند نقطة عليه.

إرشادات للدراسة


مُعّدل التغيّر اللحظي

عند حساب نهاية ميل المستقيم القاطع عندما $h \! - \! 0$ ، فإن الحدود الباقية بعد إجراء الاختصارات، والتي تحتوي المتغير h ستصبح أصفارًا.

ميل المماس للمنحنى عند نقطة عليه

. (1, 1) أوجد ميل مماس منحنى الدالة $y=x^2$ الممثَّلة بالشكل أدناه عند النقطة $y=x^2$

$$m = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 $x = 1$
 $= \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$
 $f(1+h) = (1+h)^2$, $f(1) = 1^2$
 $= \lim_{h \to 0} \frac{(1+h)^2 - 1^2}{h}$
 $= \lim_{h \to 0} \frac{1+2h+h^2-1}{h}$
 $= \lim_{h \to 0} \frac{h(2+h)}{h}$
 $= \lim_{h \to 0} (2+h)$
 $= 2+0 = 2$

.2 هو (1, 1) هو يال منحنى $y = x^2$ عند النقطة

مين في المحتى المستقيم النبياني للمنحنى ومماسه عند النقطة (1, 1) نلاحظ أن ميل المستقيم الذي يمثّل المماس يساوى 2.

🚺 تحقق من فهمك

أوجد ميل مماس كل منحنى مما يأتي عند النقطة المعطاة:

$$y = x^2 + 4$$
, (-2, 8) (1B $y = x^2$, (3, 9) (1A

. عليه (x,f(x)) عليه عند أي نقطة مُعدل التغيّر اللحظي لإيجاد معادلة ميل المنحنى عند أي نقطة

مثال 2 ميل المنحنى عند أي نقطة عليه

أوجد معادلة ميل منحنى $y = \frac{4}{x}$ عند أي نقطة عليه.

$$m = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 صيغة مُعدل التغيّر اللحظي $\frac{f(x+h) - f(x)}{h}$

$$f(x+h) = \frac{4}{x+h}$$
, $f(x) = \frac{4}{x}$ $m = \lim_{h \to 0} \frac{\frac{4}{x+h} - \frac{4}{x}}{h} - \frac{4}{4h}$

اطرح الكسرين في البسط، ثم التبسيط
$$m=\lim_{h \to 0} rac{\frac{n!}{x(x+h)}}{h}$$

$$m = \lim_{h \to 0} \frac{-4h}{xh(x+h)}$$

اقسم على
$$h$$
 ، ثم اضرب $m = \lim_{h \to 0} \frac{-4}{x^2 + xh}$

$$m = \frac{-4}{x^2 + x(0)}$$

بسط
$$m = \frac{-4}{r^2}$$

 $m = -\frac{4}{x^2}$ عليه هو (x, f(x)) عليه هو أي أن ميل المماس للمنحنى عند أي نقطة والشكل المجاور يبين ميل المنحنى عند ثلاث نقط مختلفة.

أوجد معادلة ميل منحنى كل دالة مما يأتي عند أي نقطة عليه:

$$y = x^3$$
 (2B $y = x^2 - 4x + 2$ (2A

إرشادات للدراسة

موقع الجسم

👸 الريطاعع الحياة

أحرز العداء السعودي محمد شاوين

ذهبية سباق m 1500 في دورة ألعاب أسيا المقامة في الصين عام 2010م، وفي المتوسط فقد قطع مسافة

كيلومتر خلال 2:24:33 دقيقة تقريبًا.

إرشادات للدراسة

سبق أن عرفت عند دراسة

الاتجاه له دلالة خاصة في المسافة المتجهة والزاوية

المتجهة، كذلك فإن الاتجاه

في السرعة المتجهة له دلالة

الإحداثيات القطبية أن

موقع الجسم عادة يعطى بالعلاقة (x) = y وذلك لتحديد الموقع في المستوى بدلالة الإحداثيين y, x، أما إذا أعطي بوصفه دالة في الزمن t، فهذا يعني الإزاحة (محصلة المركبة x عند اللحظة t، وإذا كانت الحركة على خط مستقيم فإن دالة الموقع تكون نفسها دالة المسافة مع أخذ الاتجاه بعين الاعتبار.

السرعة المتجهة اللحظية: تعلمت سابقًا طريقة حساب السرعة المتوسطة لجسم يقطع مسافة (f(t) في زمن مقداره t، من خلال قسمة المسافة المقطوعة على الزمن الذي استغرفه الجسم لقطع تلك المسافة. والسرعة المتجهة هي سرعة لها اتجاه. ويمكنك إيجاد السرعة المتوسطة المتجهة بالطريقة نفسها التي أوجدت بها السرعة المتوسطة مع توضيح اتجاهها باستعمال الإشارة في الناتج، فالإشارة الموجبة للناتج تعني اتجاه الأمام أو الأعلى، أما الإشارة السالبة فتعني اتجاه الخلف أو الأسفل.

مفهوم أساسي السرعة المتوسطة المتجهة

 $v_{\rm avg}$ اذا أُعطي موقع جسم متحرك بوصفه دالة في الزمن f(t) ، فإن السرعة المتوسطة المتجهة للجسم وذا أُعطى بالصيغة في الفترة الزمنية من p إلى d تُعطى بالصيغة

$$v_{
m avg} = rac{f(b) - f(a)}{b - a}$$
 التغيّر في المسافة الزمن $\frac{f(b) - f(a)}{b - a}$

مثال 3 من واقع الحياة

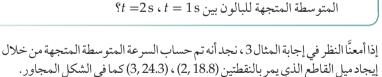
السرعة المتوسطة المتجهة

جري: تمثّل المعادلة t + 12t + $13t^2$ المسافة بالأميال، والتي قطعها عدّاء بعد t ساعة باتجاه خط النهاية. ما سرعته المتوسطة المتجهة بين الساعتين الثانية والثالثة من زمن السباق؟

أو جد أو لًا المسافة الكلية التي قطعها العدَّاء عند الزمن a=2 , b=3

$$f(t) = -1.3t^2 + 12t$$
 المعادلة الأصلية $f(t) = -1.3t^2 + 12t$

$$f(2) = -1.3(2)^2 + 12(2)$$
 $a = 2, b = 3$ $f(3) = -1.3(3)^2 + 12(3)$


$$f(2) = 18.8$$
 $f(3) = 24.3$

استعمل الآن صيغة السرعة المتوسطة المتجهة.

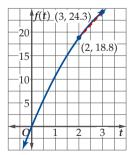
أي أن السرعة المتوسطة المتجهة للعدّاء بين الساعتين الثانية والثالثة هي 5.5 mi/h إلى الأمام.

🗹 تحقق من فهمك

ن السرعة $h(t) = 5 + 65t - 16t^2$ المرتفاع بالأقدام بعد t ثانية لبالون يصعد رأسيًّا، ما السرعة t = 2s ، t = 1s

و لإيجاد سرعة العدّاء المتجهة عند لحظةٍ زمنيةٍ محددة t ، فإننا نجد مُعدّل التغيّر اللحظى لمنحنى f(t) عند تلك اللحظة .

والسرعة المتجهة التي تم حسابها هي السرعة المتوسطة المتجهة خلال فترة زمنية ، وليست


السرعة المتجهة اللحظية، والتي تساوي سرعة الجسم المتجهة عند لحظةٍ زمنيةٍ محددة.

مفهوم أساسي السرعة المتجهة اللحظية

إذا أُعطي موقع جسم متحرك بوصفه دالة في الزمن $f\left(t
ight)$ ، فإن السرعة المتجهة اللحظية v(t) لذلك الجسم عند الزمن t تعطى بالصيغة

$$v(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

بشرط أن تكون هذه النهاية موجودة.

وزارة التعليم

السرعة المتجهة اللحظية عند لحظة زمنية معينة

200278

التعويض تذكر أن توزَّع الإشارة السالبة إلى يسار (f(t على كل حد فيها.

سقطت كرة من قمة بناية ارتفاعها $f(t) = 2000 - 16t^2$ الدالة $f(t) = 2000 - 16t^2$ ارتفاع الكرة عن سطح الأرض بالأقدام بعد t ثانية من سقوطها. أوجد السرعة المتجهة اللحظية v(t) للكرة بعد t ثانية من سقوطها.

لإيجاد السرعة المتجهة اللحظية، افترض أن t=5، وطبق صيغة السرعة المتجهة اللحظية.

$$v(t) = \lim_{h \to 0} rac{f(t+h) - f(t)}{h}$$
 صيغة السرعة المتجهة اللحظية $v(t) = \lim_{h \to 0} rac{f(t+h) - f(t)}{h}$ $v(5) = \lim_{h \to 0} rac{2000 - 16(5+h)^2 - [2000 - 16(5)^2]}{h}$ $v(5) = \lim_{h \to 0} rac{-160h - 16h^2}{h}$ $v(5) = \lim_{h \to 0} rac{-160h - 16h}{h}$ $v(5) = \lim_{h \to 0} \frac{-160h - 16h}{h}$

أي أن سرعة الكرة بعد 5s هي £160 ft، أما الإشارة السالبة فتعني أن الكرة تهبط لأسفل.

🗹 تحقق من فهمك

مـثال 4

4) سقطت علبة مادة التنظيف من يد عامل في أثناء قيامه بتنظيف نافذة بناية على ارتفاع $1400\,\mathrm{ft}$ عن سطح الأرض، وتمثل الدالة $h(t)=1400-16t^2$ ارتفاع العلبة بالأقدام بعد t ثانية من سقوطها. أو جد السرعة المتجهة اللحظية للعلبة v(t) بعد v(t) بعد v(t)

يمكن إيجاد معادلة للسرعة المتجهة اللَّحظية عند أي زمن.

مـثال 5 السرعة المتجهة اللحظية عند أي لحظة زمنية

تُعطى المسافة التي يقطعها جسم بالسنتمترات بعد t ثانية بالدالة 1-3t-3t-1 . أوجد معادلة السرعة المتجهة اللحظية v(t) للجسم عند أي زمن .

طبِّق صيغة السرعة المتجهة اللحظية.

$$v(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h}$$

$$s(t+h) = 18(t+h) - 3(t+h)^3 - 1$$

$$s(t) = 18t - 3t^3 - 1$$

$$s(t) = 18t - 3t^3 - 1$$

$$= \lim_{h \to 0} \frac{18(t+h) - 3(t+h)^3 - 1 - [18t - 3t^3 - 1]}{h}$$

$$= \lim_{h \to 0} \frac{18h - 9t^2h - 9th^2 - 3h^3}{h}$$

$$= \lim_{h \to 0} \frac{h(18 - 9t^2 - 9th - 3h^2)}{h}$$

$$= \lim_{h \to 0} (18 - 9t^2 - 9th - 3h^2)$$

$$= 18 - 9t^2 - 9t(0) - 3(0)^2$$

$$= 18 - 9t^2$$

 $v(t) = 18 - 9t^2$ أي أنَّ معادلة سرعة الجسم المتجهة اللحظية عند أي زمن هي

🔽 تحقق من فهمك

تمثّل الدالة $s(t) = 90t - 16t^2$ ارتفاع صاروخ بعد t ثانية من إطلاقه رأسيًّا من مستوى سطح البحر ، حيث الارتفاع بالأقدام. أوجد معادلة السرعة المتجهة اللحظية v(t) للصاروخ عند أي زمن .

تدرب وحل المسائل

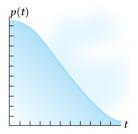
أوجد ميل مماس منحنى كل دالة مما يأتي عند النقاط المعطاة: (مثال 1)

$$y = x^2 - 5x$$
, $(1, -4)$, $(5, 0)$ (1)

$$y = 6 - 3x$$
, $(-2, 12)$, $(6, -12)$ (2)

$$y = \frac{3}{x}$$
, (1, 3), (3, 1) (3

$$y = x^3 + 8$$
, $(-2, 0)$, $(1, 9)$ (4


أوجد معادلة ميل منحني كل دالة مما يأتي عند أي نقطة عليه: (مثال 2)

$$y = -x^2 + 4x$$
 (6 $y = 4 - 2x$ (5

$$y = \frac{1}{x^2}$$
 (8 $y = 8 - x^2$ (7

$$y = -2x^3$$
 (10 $y = \frac{1}{\sqrt{x}}$ (9

موقع $p(t) = 0.06t^3 - 1.08t^2 + 51.84$ موقع (11) تزلج: تمثّل الدالة $p(t) = 0.06t^3 - 1.08t^2 + 51.84$ منزلج على سفح جليدي بعد t ثانية من انطلاقه. (مثال 2)

a) أوجد معادلة ميل السفح الجليدي عند أي زمن.

$$t = 2s, 5s, 7s$$
 أو جد الميل عندما (**b**

تمثّل s(t) في كلِّ مما يأتي بُعد جسم متحرك عن نقطة ثابتة بالأميال بعد t دقيقة. أوجد السرعة المتوسطة المتجهة للجسم بالميل لكل ساعة في الفترة الزمنية المعطاة. (تذكر بأن تحوِّل الدقائق إلى ساعات) : (مثال 3)

$$s(t) = 0.4t^2 - \frac{1}{20}t^3$$
, $3 \le t \le 5$ (12)

$$s(t) = 1.08t - 30$$
, $4 \le t \le 8$ (13)

$$s(t) = 0.01t^3 - 0.01t^2$$
, $4 \le t \le 7$ (14)

$$s(t) = -0.5(t-5)^2 + 3$$
, $4 \le t \le 4.5$ (15)

t عدد المعادلة 12 $f(t) = -16t^2 + 65t + 12$ الارتفاع بالأقدام بعد المتو ثانية لكرة قذفت إلى أعلى، ما السرعة المتوسطة المتجهة للكرة بين t = 15, 2t

تمثّل f(t) في كلِّ مما يأتي بُعد جسم متحرك عن نقطة ثابتة بالأقدام بعد t ثانية. أوجد السرعة المتجهة اللّحظية لهذا الجسم عند الزمن t

المُعطى: (مثال 4)

$$f(t) = 100 - 16t^2, t = 3$$
 (17)

$$f(t) = 38t - 16t^2, t = 0.8$$
 (18)

$$f(t) = -16t^2 - 400t + 1700, t = 3.5$$
 (19)

$$f(t) = 1275 - 16t^2, t = 3.8$$
 (20)

$$f(t) = 73t - 16t^2$$
, $t = 4.1$ (21)

$$f(t) = -16t^2 + 1100, t = 1.8$$
 (22)

تمثّل s(t) في كلِّ مما يأتي المسافة التي يقطعها جسم متحرك. أوجد معادلة السرعة المتجهة اللحظية v(t) للجسم عند أي زمن : (مثال 5)

$$s(t) = t - 3t^2$$
 (24 $s(t) = 14t^2 - 7$ (23

$$s(t) = 18 - t^2 + 4t$$
 (26 $s(t) = 5t + 8$ (25

$$s(t) = 3t^3 - 20 + 6t$$
 (28 $s(t) = 12t^2 - 2t^3$ (27)

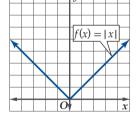
و29) قفر مظلي: يمكنُ وصفُ ارتفاع مظلي بالأقدام عن سطح الأرض بعد t ثانية من قفزه بالدالة $h(t) = 15000 - 16t^2$.

(الأمثلة 3, 4, 5)

- a) أوجد السرعة المتوسطة المتجهة للمظلي بين الثانيتين الثانية والخامسة من القفز.
- له بلغت السرعة المتجهة اللحظية للمظلِّي عند الثانية الثانية، وعند الثانية الخامسة؟
 - c) أو جد معادلة سرعة المظلى المتجهة اللحظية عند أي زمن.
- قوص: يُبيِّنَ الجدول أدناه ارتفاع غواص d مقربًا لأقرب جزء من عشرة بالأمتار عن سطح الماء بعد t ثانية من قفزه من مكان مرتفع نحو الماء.

t	0.5	0.75	1.0	1.5	2.0	2.5	3.0
d	43.8	42.3	40.1	34	25.3	14.3	0.75

- احسب السرعة المتوسطة المتجهة للغواص في الفترة الزمنية (a $t \leq 1.0$
- إذا كانت معادلة المنحنى لنقاط الجدول هي $d(t) = -4.91t^2 0.04t + 45.06$ الجدول هي العواص المتجهة اللحظية v(t) بعد t ثانية ، ثم استعمل v(t) لحساب سرعته بعد 3s.


31) كرة القدم: ركل سلمان كرة بسرعة رأسية قدرها 75 ft/s. افترض أن ارتفاع الكرة بالأقدام بعد t ثانية مُعطى بالدالة $f(t) = -16t^2 + 75t + 2.5$

- . v(t) أو جد معادلة سرعة الكرة المتجهة اللحظية (a
 - b) ما سرعة الكرة المتجهة بعد 0.5s من ركلها؟
- c) إذا علمت أن السرعة المتجهة اللحظية للكرة لحظة وصولها إلى أقصى ارتفاع هي صفر، فمتى تصل إلى أقصى ارتفاع؟
 - d) ما أقصى ارتفاع تصل إليه الكرة؟
- 32) فيزياء: تعطى المسافة التي يقطعها جسم يتحرك على مسار مستقيم بالمعادلة $4+4+3t^3+8t+4$ ، حيث t الزمن بالثواني ، و d المسافة بالأمتار.
 - أوجد معادلة السرعة المتجهة اللحظية للجسم v(t) عند أي زمن.
 - استعمل v(t) لحساب سرعة الجسم المتجهة عندما (**b** t = 2s, 4s, 6s

مسائل مهارات التفكير العليا

33) اكتشف الخطأ: سُئل على وجميل أن يصفا معادلة ميل مماس منحني الدالة الممثّلة بيانيًّا في الشكل المجاور عند أي نقطة على منحناها. فقال على: إن معادلة الميل ستكون متصلة ؛ لأن الدالة الأصلية متصلة ، في حين قال جميل: إن معادلة الميل لن تكون

- متصلة. أيهما كانت إجابته صحيحة? فسِّر إجابتك.
- $f(x) = 2x^4 + 3x^3 2x$ تحدً: أوجد معادلة ميل مماس منحنى (34 عند أي نقطة عليه.
 - 35) تبرير: هل العبارة الآتية صحيحة أو خاطئة " يقطع المماس منحنى الدالة عند نقطة التماس فقط"؟ برِّ ر إجابتك.
- t عمر أم خطأ: إذا أُعطيت المسافة التي يقطعها جسم بعد tثانية بـb+b ، فإن السرعة المتجهة اللحظية للجسم ثانية بـs(t)=at+bتساوى a دائمًا. برِّر إجابتك.
- **37) اكتب** بيِّن لماذا تكون السرعة المتجهة اللحظية لجسم متحرك صفرًا عند نقطة القيمة العظمي والصغرى لدالة المسافة.

مراجعة تراكمية

احسب كل نهاية مما يأتي (إن وجدت): (الدرس 4-2)

$$\lim_{x \to 4} (x^2 + 2x - 2)$$
 (38)

$$\lim_{x \to -1} (-x^4 + x^3 - 2x + 1)$$
 (39)

$$\lim_{x \to 0} (x + \sin x)$$
 (40

احسب كل نهاية مما يأتي (إن وجدت): (الدرس 2-4)

$$\lim_{x \to \infty} \frac{3x^2 + x + 1}{2x^2 + 5}$$
 (41)

$$\lim_{x \to \infty} \frac{x^3 - x^2 + 2}{x^4 + x^3 + 3x}$$
 (42)

تدريب على اختبار

با معادلة ميل منحنى $y = 2x^2$ عند أي نقطة عليه؟

$$m = x$$
 C

$$m=4x$$
 A

$$m = -4x$$
 D

$$m=2x$$
 B

44) سقطت كرة بشكل رأسي، فكانت المسافة التي تقطعها بالأقدام $\lim_{h \to 0} \frac{\frac{1}{d(2+h)-d(2)}}{h}$ بعد t ثانية تعطى بالدالة $d(t) = 16t^2$ إذا كانت t عند t ثمثّل السرعة المتجهة للكرة بعد 2s ، فكم تساوي هذه السرعة ؟

64 ft/s **C**

46 ft/s **A**

72 ft/s **D**

58 ft/s **B**

(45, 34) ماميل مماس منحنى $y = x^3 + 7$ عند النقطة (3, 34)

27 **C** −9 **A**

34 **D** 9 **B** أوجد ميل مماس منحنى كل دالة مما يأتي عند النقاط المعطاة: ﴿ (الدرس 3-4)

$$y = x^2 - 3x$$
, $(2, -2)$, $(-1, 4)$ (18)

$$y = 2 - 5x$$
, $(-2, 12)$, $(3, -13)$ (19)

$$y = x^3 - 4x^2$$
, $(1, -3)$, $(3, -9)$ (20

- ألعاب نارية: انطلقت قذيفة ألعاب نارية رأسيًّا إلى أعلى بسرعة والعاب نارية رأسيًّا إلى أعلى بسرعة $h(t) = -16t^2 + 90t + 3.2$ الارتفاع الذي تبلغه القذيفة بعد t ثانية من إطلاقها. (الدرس 3-4)
 - أو جد معادلة السرعة المتجهة اللحظية v(t) للقذيفة.
 - b) ما السرعة المتجهة للقذيفة بعد 0.5s من الإطلاق؟
 - c) ما أقصى ارتفاع تبلغه القذيفة؟
 - (122) اختیار من متعدد: أيُّ مما یأتي یمثِّل معادلة میل منحنی $y = 7x^2 2$

$$m = 7x - 2$$
 C

$$m = 7x$$
 A

$$m = 14x - 2$$
 D

$$m = 14x \; \mathbf{B}$$

تُعطى المسافة التي يقطعها جسم متحرك بالأميال بعد t دقيقة بالدالة s(t). أوجد السرعة المتوسطة المتجهة للجسم في كل مما يأتي بالميل لكل ساعة على الفترة الزمنية المعطاة. تذكّر أن تحول الدقائق إلى ساعات. (الدرس s-4)

$$s(t) = 12 + 0.7t$$
, $2 \le t \le 5$ (23)

$$s(t) = 2.05t - 11$$
, $1 \le t \le 7$ (24)

$$s(t) = 0.9t - 25$$
, $3 \le t \le 6$ (25)

$$s(t) = 0.5t^2 - 4t$$
, $4 \le t \le 8$ (26)

أوجد معادلة السرعة المتجهة اللحظية v(t) لجسم يُعطى موقعه عند أي زمن بالعلاقة h(t) في كل مما يأتي: (المدرس 3-4)

$$h(t) = 4t^2 - 9t$$
 (27)

$$h(t) = 2t - 13t^2$$
 (28)

$$h(t) = 2t - 5t^2$$
 (29)

$$h(t) = 6t^2 - t^3$$
 (30)

$$\lim_{x \to 0^+} \frac{|x|}{x}$$
 (2

$$\lim_{x \to 0^+} \frac{\sin x}{x}$$
 (1

$$\lim_{x \to 0^{-}} \frac{\cos x - 1}{x}$$
 (4

$$\lim_{x \to 3^{-}} \frac{2x^2 - 18}{x - 3}$$
 (3

$$\lim_{x \to 1} \sqrt{x^3 + 3}$$
 (6

$$\lim_{x \to 3} \frac{2x}{x^2 + 1}$$
 (5

$$\lim_{x \to 3} \frac{|4 - x|}{\sqrt{3x}}$$
 (8

$$\lim_{x \to -4} \frac{\sqrt{x+20}}{x}$$
 (7

- (9) تزداد قيمة تحفة فنية فريدة سنويًّا بحيث تُعطى قيمتها بآلاف الريالات بعد $v(t)=rac{400t+2}{2t+15}$
 - مثِّل الدالة v(t) بيانيًّا في الفترة 10 $t \leq 0$.
 - استعمل التمثيل البياني؛ لتقدير قيمة التحفة الفنية عندما t = 2, 5, 10
 - . $\lim_{t\to\infty}v(t)$ استعمل التمثيل البياني لتقدير (د
 - d) وضّح العلاقة بين النهاية وسعر التحفة الفنية.

احسب كل نهاية مما يأتي بالتعويض المباشر ، إذا كان ممكنًا، وإلا فاذكر السبب. (الدرس 2-4)

$$\lim_{x \to 9} \frac{x^2 + 1}{\sqrt{x} - 3}$$
 (10

$$\lim_{x \to -2} (2x^3 + x^2 - 8)$$
 (11)

(12 حياة بريَّة: يمكن تقدير عدد الغزلان بالمئات في محمية بالعلاقة
$$P(t) = \frac{10t^3 - 40t + 2}{2t^3 + 14t + 12}$$
 عدد للغزلان يمكن أن يوجد في هذه المحمية؟ (الدرس 4-2)

احسب كل نهاية مما يأتي إذا كانت موجودة: (الدرس 4-2)

$$\lim_{x \to \infty} \frac{2x^3 - x - 2}{4x^3 + 5x^2}$$
 (14 $\lim_{x \to \infty} (15 - x^2 + 8x^3)$ (13

$$\lim_{x \to \infty} (10x^3 - 4 + x^2 - 7x^4) \text{ (16} \quad \lim_{x \to \infty} \frac{2x^2 + 5x - 1}{2x^4 - 14x^2 + 2} \text{ (15)}$$

$$\lim_{x\to 0} \frac{2x^2+5}{10-(2.7)^{\frac{16}{x}}}$$
 قدِّر قدِّر (17) اختیار من متعدد: قدِّر (4-1)

$$\frac{1}{2}$$
 B

$$-\infty$$
 D

$$\infty$$
 C

4-4

المشتقات

Derivatives

لماذا 9

ركل أحمد كرةً رأسيًّا إلى أعلى من ارتفاع 3 ft، فانطلقت بسرعة 65 ft/s . يمكنك استعمال معادلات الحركة بتسارع ثابت، التي درستها في الفيزياء لكتابة دالة تصف ارتفاع الكرة بعد t ثانية، ومن ثم تحديد ما إذا كانت الكرة ستبلغ ارتفاع 68 ft ft.

قواعد أساسية للاشتقاق: استعملت النهايات في الدرس 4-3 لتحديد ميل مماس منحنى الدالة f(x) عند أي نقطة عليه ، وتُسمى هذه النهاية مشتقة الدالة ويرمز لها بالرمز f'(x)، وتُعطى بالصيغة:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

بشرط وجود هذه النهاية، وتُسمَّى عملية إيجاد المشتقة الاشتقاق، وتُسمَّى النتيجة معادلة تفاضلية.

مثال 1 مشتقة دالة عند أي نقطة

. x=1 , 5 باستعمال النهايات، ثم احسب قيمة المشتقة عندما $f(x)=4x^2-5x+8$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = 4(x+h)^2 - 5(x+h) + 8,$$

$$f(x) = 4x^2 - 5x + 8$$

$$= \lim_{h \to 0} \frac{4(x+h)^2 - 5(x+h) + 8 - (4x^2 - 5x + 8)}{h}$$

$$= \lim_{h \to 0} \frac{8xh + 4h^2 - 5h}{h}$$

$$= \lim_{h \to 0} \frac{h(8x + 4h - 5)}{h}$$

$$h_{b \to 0} = \lim_{h \to 0} (8x + 4h - 5)$$

$$= \lim_{h \to 0} (8x + 4h - 5)$$

$$= 8x + 4(0) - 5 = 8x - 5$$

. x=1 , مشتقة f'(x) عندما f'(x)=8x-5 أي أن مشتقة f(x) عندما

$$f'(x) = 8x - 5$$
 المعادلة الأصلية $f'(x) = 8x - 5$ $f'(1) = 8(1) - 5$ $x = 1, x = 5$ $f'(5) = 8(5) - 5$ $f'(1) = 3$ سَمَانًا $f'(5) = 35$

🔽 تحقق من فهمك

أوجد مشتقة f(x) باستعمال النهايات، ثم احسب قيمة المشتقة عند قيم x المعطاة:

$$f(x) = -5x^2 + 2x - 12, x = 1, 4$$
 (1B) $f(x) = 6x^2 + 7, x = 2, 5$ (1A)

يُر من لمشتقة y=f(x) أيضًا بالرموز $\frac{dy}{dx}$, $\frac{dy}{dx}$ ، وإذا سبق الدالة المؤثر التفاضلي y=f(x) ، فإن ذلك يعني إلحاد مشتقة الدالة.

فيما سيقى

درستُ حساب ميل المماسات الإيجاد مُعدَّل التغيُّر اللحظي. (الدرس 3-4)

والانتان

- أجدُ ميل منحنى دالة غير خطية باستعمال المشتقات.
- أستعملُ قواعد الاشتقاق
 لإيجاد المشتقات.

المضرداتين

المشتقة

derivative الاشتقاق

differentiation

unierendadon

المعادلة التفاضلية differential equation

المؤثر التفاضلي

differential operator

قراءة الرياضيات

لمشتقات

f يُقرأ الرمز f'(x) مشتقة f بالنسبة للمتغير f prime of f .

🖏 تاريخ الرياضيات

شرف الدين الطوسي

العالم المسلم شرف الدين الطوسي (المتوفى عام 610هـ) من خلال دراسته المعادلات التي درجتها ≥ 8 استعمل في حل هذه المعادلات، القيمة العظمى للعبارات الجبرية، وأخذ" المشتق الأول "لهذه العبارات الأول)، وبرهن على أن جدر المعادلة التي يحصل عليها إذا ما عُوض به في العبارة الجبرية، أعطى القيمة العبارة العبارة.

حتى هذه اللحظة استعملت النهاية؛ لإيجاد كلِّ من المشتقة وميل المماس والسرعة المتجهة اللحظية. وتُعدُّ قاعدة مشتقة القوة من أكثر القواعد فعالية لإيجاد المشتقات من دون اللجوء إلى استعمال النهايات، مما يجعل عملية إيجاد المشتقات أكثر سهولةً و دقة.

قاعدة مشتقة القهة

مفهوم أساسي

التعبير اللفظى: قوة x في المشتقة أقل بواحد من قوة x في الدالة الأصلية، ومعامل x في المشتقة يساوى قوة x في الدالة الأصلية.

.
$$f'(x) = nx^{n-1}$$
 إذا كان $f(x) = x^n$ ، حيث $f(x) = x^n$

الرموز:

مـثال 2

أوجد مشتقة كل دالة مما يأتى:

$$f(x) = x^9$$
 (a)

الدالة المعطاة
$$f(x) = x^9$$

قاعدة مشتقة القوة
$$f'(x) = 9x^{9-1}$$

$$=9x^8$$

قاعدة مشتقة القوة

$$g(x) = \sqrt[5]{x^7} \ \mathbf{(b)}$$

الدالة المعطاة
$$g(x) = \sqrt[5]{x^7}$$

أعد كتابة الدالة كقوّة نسبية
$$g(x) = x^{\frac{7}{5}}$$

قاعدة مشتقة القوة
$$g'(x) = \frac{7}{5} x^{\frac{7}{5} - 1}$$

بسُط
$$= \frac{7}{5} x^{\frac{2}{5}} = \frac{7}{5} \sqrt[5]{x^2}$$

$$h(x) = \frac{1}{x^8}$$
 (c

الدالة المعطاة
$$h(x) = \frac{1}{x^8}$$

أعد كتابة الدالة كقوّة سالبة
$$h(x) = x^{-8}$$

قاعدة مشتقة القوة
$$h'(x) = -8 x^{-8-1}$$

$$= -8 x^{-9} = -\frac{8}{x^9}$$

🗹 تحقق من فهمك

تنبيها

مشتقات القوى السالية

مشتقة $f(x) = x^{-4}$ ليست تذکر . $f'(x) = -4x^{-3}$

بأننا يجب أن نطرح واحدًا من

 $f'(x) = -4x^{-5}$ لذا فإن

الأس؛ لنحصل على: -4-1=-4+(-1)=-5

$$m(x) = \frac{1}{x^5}$$
 (2C $k(x) = \sqrt{x^3}$ (2B $j(x) = x^4$ (2A)

هناك العديد من قواعد الاشتقاق الأخرى المهمة التي تفيد في إيجاد مشتقات الدوال التي تحوي أكثر من حدٍّ.

قواعد أخرى للاشتقاق

مفهوم أساسي

مشتقة الدالة الثابتة تساوي صفرًا؛ أي أنه إذا كانت c عيد c عيد ثابت، مشتقة الثابت: f'(x) = 0 فإن

. $f'(x)=cnx^{n-1}$ و $f(x)=cx^n$ اذا كانت $f(x)=cx^n$ ، حيث $f(x)=cx^n$ ثابت، و $f(x)=cnx^n$

مشتقة المجموع أو الفرق: $f(x)=g(x)\pm h'(x)$ ، فإن: $f(x)=g(x)\pm h(x)$ المجموع أو الفرق: إذا كانت:

قواعد الاشتقاق

أوجد مشتقة كل دالة مما يأتي:

$$f(x) = 5x^3 + 4$$
 (a

ماثال 3

الدالة المعطاة
$$f(x) = 5x^3 + 4$$

قواعد مشتقات الثابت، ومضاعفات القوى، والمجموع
$$f'(x) = 5 \cdot 3x^{3-1} + 0$$

$$= 15x^2$$

$$g(x) = x^5(2x^3 + 4)$$
 (b)

الدالة المعطاة
$$g(x) = x^5(2x^3 + 4)$$

خاصية التوزيع
$$g(x) = 2x^8 + 4x^5$$

قاعدتا مشتقتّي مضاعفات القوى، والمجموع
$$g'(x) = 2 \cdot 8x^{8-1} + 4 \cdot 5x^{5-1}$$

$$= 16x^7 + 20x^4$$

$$h(x) = \frac{5x^3 - 12x + 6\sqrt{x^5}}{x}$$
 (c

$$h(x) = \frac{5x^3 - 12x + 6\sqrt{x^5}}{x} \quad \text{(c}$$

$$h(x) = \frac{5x^3 - 12x + 6\sqrt{x^5}}{x}$$

$$x$$
اقسم كل حدٌّ في البسط على المرا $h(x) = \frac{5x^3}{x} - \frac{12x}{x} + \frac{6\sqrt{x^5}}{x}$

$$x^{\frac{5}{2}} \cdot x^{-1} = x^{\frac{3}{2}}$$
 $h(x) = 5x^2 - 12 + 6x^{\frac{3}{2}}$

قواعد مشتقات الثابت، ومضاعفات القوى، والمجموع والفرق
$$h'(x)=5\cdot 2$$
 والمجموع والفرق $x^2-1-0+6\cdot \frac{3}{2}$

بسُط
$$= 10x + 9x^{\frac{1}{2}} = 10x + 9\sqrt{x}$$

🚺 تحقق من فهمك

أوجد مشتقة كل دالة مما يأتى:

$$h(x) = \frac{4x^4 - 3x^2 + 5x}{x}$$
 (3C $g(x) = 3x^4(x+2)$ (3B $f(x) = 2x^5 - x^3 - 102$ (3A)

الآن ، وبعد أن درست القواعد الأساسية للاشتقاق، يمكنك حل المسائل التي تتطلب حساب ميل مماس المنحني، أو إيجاد السرعة المتجهة اللحظية بخطوات أقل، ففي مثال 5 من الدرس 3–4 ، أوجدنا معادلة السرعة المتجهة اللحظية لجسم متحركٍ، وستلاحظ الآن سهولة حل المسألة نفسها بتطبيق قواعد الاشتقاق.

السرعة المتجهة اللحظية مثال 4

تُعطى المسافة التي يقطعها جسم بالسنتمترات بعد t ثانية بالدالة: $s(t) = 18t - 3t^3 - 1$ ، أو جد معادلة السرعة المتجهة اللحظية v(t) للجسم.

s'(t) السرعة المتجهة اللحظية للجسم هي

الدالة المعطاة
$$s(t) = 18t - 3t^3 - 1$$

قواعد مشتقات الثابت، ومضاعفات القوى، والفرق
$$s'(t) = 18 \cdot 1t^{1-1} - 3 \cdot 3t^{3-1} - 0$$

$$= 18 - 9t^2$$

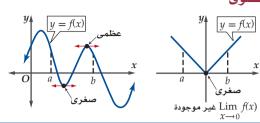
أي أن سرعة الجسم المتجهة اللحظية هي: $v(t) = 18 - 9t^2$ ، لاحظ أن هذه الإجابة مكافئة لتلك التي حصلت عليها في المثال 5 من الدرس 3-4.

🗹 تحقق من فهمك

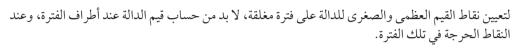
الدالة: $h(t) = 55t - 16t^2$ تمثّل الارتفاع بالأقدام بعد t ثانية لكرة قُذِفت رأسيًّا إلى أعلى. أو جد معادلة المرتفاع بالأقدام بعد tالسرعة المتجهة اللحظية للكرة عند أي زمن. 2021 - 1443

المشتقات

تنبيها


للتسهيل يمكنك إيجاد كلِّ من

ميل المماس لمنحنى الدالة، والسرعة المتجهة اللحظية، ومشتقة الدالة، باستخدام


القواعد ما لم يُطلب منك استخدام النهايات لإيجاد أي

اذا کانت x = f(x)، فان f(x) و إذا كانت f'(x) = 1f'(x) = cفإن ، = cx النقطة التي تكون عندها مشتقة الدالة صفرًا أو غير موجودة تُسمَّى نقطةً حرجةً للدالة، والنقطة الحرجة قد تشير إلى وجود نقطَّة قيمة عظمي أو صغري للدالة ، وتحدثُ عندما يكون ميل مماس منحني الدالة صفرًا أو غير موجود.

نظرية القيمة القصوي

(a,b] متصلة على الفترة المغلقة أ(x)(a, b] فإن لها قيمة عظمى وصغرى على الفترة وذلك إما عند أحد طرفَي الفترة أو عند إحدَى النقاط الحرجة.

🥡 مثال 5 من واقع الحياة

القيمتان العظمى والصغرى لدالة

أفعوانية: الدالة: $\frac{11}{3} + 4t^2 + \frac{11}{3}$ تمثِّل ارتفاع إبراهيم بالأقدام في أثناء ركوبه أفعوانية، حيث $h(t) = -\frac{1}{3}t^3 + 4t^2 + \frac{11}{3}$ الزمن بالثواني في الفترة الزمنية [1, 12] ، أوجد أقصى وأدنى ارتفاع يبلغه إبراهيم.

h(t) أو جد مشتقة

الدالة المعطاة
$$h(t) = -\frac{1}{3}t^3 + 4t^2 + \frac{11}{3}$$

قواعد اشتقاق الثابت، ومضاعفات القوى، والمجموع، والفرق
$$h'(t) = -\frac{1}{3} \cdot 3 \ t^{3-1} + 4 \cdot 2t^{2-1} + 0$$
 سيط $= -t^2 + 8t$

. h'(t) = 0 أو جد النقاط الحرجة بحل المعادلة

اكتب المعادلة
$$h'(t) = 0$$

$$h'(t) = -t^2 + 8t$$
 $-t^2 + 8t = 0$

$$-t(t-8)=0$$

إذن: 8=t أو t=0 ، وحيث إن t=0 لا تقع في الفترة [1, 12] ، فإن للدالة نقطة حرجة واحدة عند t=8 ؛ لذا . t = 1, 8, 12 نحسب قيم h(t) عندما

$$h(1) = -\frac{1}{3}(1)^3 + 4(1)^2 + \frac{11}{3} \approx 7.33$$

قيمة عظمى
$$h(8) = -\frac{1}{3}(8)^3 + 4(8)^2 + \frac{11}{3} = 89$$

قیمة صغری
$$h(12) = -\frac{1}{3}(12)^3 + 4(12)^2 + \frac{11}{3} \approx 3.67$$

أي أن أقصى ارتفاع يبلغه إبراهيم هو 89 ft، وذلك بعد 85، في حين أن أدنى ارتفاع هو 3.67 ft تقريبًا بعد 12s.

المجاور على $h(t) = -\frac{1}{3}t^3 + 4t^2 + \frac{11}{3}$ المجاور على الفترة [1, 12] باستعمال الآلة البيانية يعرُّز هذه النتيجة ، حيث يبيِّن التمثيل البياني أن أعلى ارتفاع يساوي $89 \, \mathrm{ft}$ ، ويكون عندما $t = 8 \, \mathrm{s}$ ✓ t = 12 وأدنى ارتفاع يساوى 3.67، ويكون عندما

ازدادت سرعة الأفعوانيات حديثًا لتصل إلى 120 mi/h ، وكذلك

ازدادت ارتفاعاتها لتبلغ 450 ft.


🕞 الريطامع الحياة

إرشادات للدراسة

دالة كثيرة الحدود

مجال تعريف دالة كثيرة الحدود هو مجموعة الأعداد الحقيقية لذلك إذا كانت المشتقة دالة كثيرة حدود، فإن النقاط الحرجة توجد فقط عندما تكون المشتقة

ولذلك عند إيجاد القيم العظمى والصغرى لدالة كثيرة حدود f(x) على فترة [a, b]، نجد قيم الدالة عند طرفى الفترة وعند أي قيمة لـ x تكون عندها f′(x)=0.

🚺 تحقق من فهمك

رياضة القفز: الدالة: $h(t) = 20t^2 - 160t + 330$ مثلًا ارتفاع سعد بالأقدام في أثنًاء مشاركته في قفز ق البنجي (القفز من أماكن مرتفعة، بحيث تكون القدمان موثقتين بحبل مطاطيٍّ)، حيث لا الزمن بالثواني في الفترة [0,6] . أوجد أقصى وأدنى ارتفاع يبلغه سعد في هذه الفترة الَّزمنية. 2021 - 1443

قاعدتا مشتقّتَي الضرب والقسمة: تعلَّمت في هذا الدرس أن مشتقة مجموع دالَّتين تساوي مجموع مشتقّتَي الدالتين، فهل تكون مشتقة ناتج ضرب دالتين مساويةً لناتج ضرب مشتقتي الدالتين؟ افترض أن: $f(x) = x, g(x) = 3x^3$

ضرب المشتقات

مشتقة الضرب

$$\frac{d}{dx} f(x) \cdot \frac{d}{dx} g(x) = \frac{d}{dx} (x) \cdot \frac{d}{dx} (3x^3)$$
$$= 1 \cdot 9x^2 = 9x^2$$

$$\frac{d}{dx} [f(x) \cdot g(x)] = \frac{d}{dx} [x \cdot 3x^3]$$
$$= \frac{d}{dx} (3x^4) = 12 x^3$$

يتضح من هذا المثال أن مشتقة ناتج ضرب دالَّتين لا تساوي بالضرورة ناتج ضرب مشتقتَي الدالتين، ويمكننا استعمال القاعدة الآتية لإيجاد مشتقة ناتج ضرب دالَّتين.

قاعدة مشتقة الضرب

مفهوم أساسي

. $\frac{d}{dx}[f(x)\ g(x)] = f'(x)\ g(x) + f(x)\ g'(x)$ فإن: (x) فإن: (x) من الدالتين (x) موجودة عند (x) موجودة عند (x)

ستبرهن قاعدة مشتقة الضرب في التمرين 48

قاعدة مشتقة الضرب

مـثال 6

أوجد مشتقة كل دالةٍ مما يأتي:

$$h(x) = (x^3 - 2x + 7)(3x^2 - 5)$$
 (a

.
$$h(x) = f(x)g(x)$$
 أي أن: $f(x) = x^3 - 2x + 7$, $g(x) = 3x^2 - 5$ أي أن:

من الفرض
$$f(x) = x^3 - 2x + 7$$

قواعد مشتقات القوة، ومضاعفات القوى، والثابت، والمجموع والفرق
$$f'(x)=3 \; x^2-2$$

من الفرض
$$g(x) = 3 x^2 - 5$$

قواعد مشتقات مضاعفات القوى، والثابت، والفرق
$$g'(x) = 6 x$$

h(x) مشتقة f(x), f'(x), g(x), g'(x) استعمل

قاعدة مشتقة المضرب
$$h'(x)=f'(x)\ g(x)+f(x)\ g'(x)$$

عوَض =
$$(3x^2 - 2)(3x^2 - 5) + (x^3 - 2x + 7)(6x)$$

خاصية التوزيع
$$=9x^4 - 15x^2 - 6x^2 + 10 + 6x^4 - 12x^2 + 42x$$

$$= 15x^4 - 33x^2 + 42x + 10$$

$$h(x) = (x^3 - 4x^2 + 48x - 64)(6x^2 - x - 2)$$
 (b)

$$f(x) = x^3 - 4x^2 + 48x - 64$$
 , $g(x) = 6x^2 - x - 2$ افتہ ض أن:

من الفرض
$$f(x) = x^3 - 4x^2 + 48x - 64$$

قواعد مشتقات القوة، ومضاعفات القوى، والثابت، والمجموع والفرق
$$f'(x) = 3x^2 - 8x + 48$$

من الفرض
$$g(x) = 6x^2 - x - 2$$

قواعد مشتقات ومضاعفات القوى، والقوة، والثابت، والفرق
$$g'(x) = 12x - 1$$

h(x) استعمل f(x), f'(x), g(x), g'(x) لإيجاد مشتقة

الضرب
$$h'(x) = f'(x) g(x) + f(x) g'(x)$$

$$= (3x^2 - 8x + 48)(6x^2 - x - 2) + (x^3 - 4x^2 + 48x - 64)(12x - 1)$$

🗹 تحقق من فهمك

أوجد مشتقة كل دالةٍ مما يأتى:

وزارة التعليم

Manustry of Lours transfer
$$h(x) = (x^2 + x^3 + x)(8x^2 + 3)$$
 (6B $h(x) = (x^5 + 13x^2)(7x^3 - 5x^2 + 18)$ (6A 2021 - 1443

إرشادات للدراسة

قاعدة مشتقة الضرب

يَنتج عن قاعدة مشتقة الضرب مقدار يمكن تبسيطه.

ويمكنك أيضًا تركه على حاله

من دون تبسيط، ما لم تكن في حاجة إلى تبسيطه. بطريقة التبرير نفسها في مشتقة الضرب، يمكنك ملاحظة أن مشتقة ناتج قسمة دالتين لا تساوي ناتج قسمة مشتقتي الدالتين، ويمكن استعمال القاعدة الآتية لحساب مشتقة قسمة دالتين.

مفهوم أساسى قاعدة مشتقة القسمة

إذا كانت مشتقة كلِّ من الدالتين f,g موجودة عند x ، وكان $g(x) \neq 0$ ، فإن:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) g(x) - f(x) g'(x)}{\left[g(x) \right]^2}$$

ستبرهن قاعدة مشتقة القسمة في التمرين 50

قاعدة مشتقة القسمة

مـثال 7

أوجد مشتقة كل دالة مما يأتى:

$$h(x) = \frac{5x^2 - 3}{x^2 - 6}$$
 (a

$$h(x) = \frac{f(x)}{g(x)}$$
 : أي أن: $f(x) = 5x^2 - 3$, $g(x) = x^2 - 6$ ؛ أي أن:

من الفرض
$$f(x) = 5x^2 - 3$$

قواعد مشتقات مضاعفات القوى ، والثابت، والفرق
$$f'(x)=10x$$

من الفرض
$$g(x) = x^2 - 6$$

قواعد مشتقات القوة ، والثابت ، والفرق
$$g'(x) = 2x$$

h(x) مشتقه لإيجاد مشتقه f(x), f'(x), g(x), g'(x)

قاعدة مشتقة القسمة
$$h'(x) = \frac{f'(x) \, g(x) - f(x) \, g'(x)}{[g(x)]^2}$$

عوّض
$$= \frac{10x(x^2 - 6) - (5x^2 - 3)(2x)}{(x^2 - 6)^2}$$

خاصية التوزيع
$$= \frac{10x^3 - 60x - 10x^3 + 6x}{(x^2 - 6)^2}$$

$$= \frac{-54x}{(x^2 - 6)^2}$$

$$h(x) = \frac{x^2 + 8}{x^3 - 2}$$
 (b)

إرشادات للدراسة

قاعدة مشتقة القسمة يُعدُ تبسيط ناتج مشتقة

القسمة مهمًّا في كثير من

التمارين ، إلا أنه ليس من

الضروري فك أقواس المقام، ما لم ينتج عن ذلك تبسيط

.
$$f(x) = x^2 + 8$$
 , $g(x) = x^3 - 2$:افترض أن

من الفرض
$$f(x) = x^2 + 8$$

واعد مشتقات القوة ، والثابت، والمجموع
$$f'(x)=2x$$

من الفرض
$$g(x) = x^3 - 2$$

قواعد مشتقات القوة ، والثابت، والفرق
$$g'(x)=3x^2$$

.
$$h(x)$$
 مشتقة $f(x), f'(x), g(x), g'(x)$ استعمل

قاعدة مشتقة القسمة
$$h'(x) = \frac{f'(x) g(x) - f(x) g'(x)}{[g(x)]^2}$$

$$=\frac{2x(x^3-2)-(x^2+8)3x^2}{(x^3-2)^2}$$

فك الأقواس، ثم بسّط
$$= \frac{-x^4 - 24x^2 - 4x}{(x^3 - 2)^2}$$

🗹 تحقق من فهمك

أوجد مشتقة كل دالةٍ مما يأتى:

$$j(x) = \frac{7x - 10}{12x + 5}$$
 (7A)

$$k(x) = \frac{6x}{2x^2 + 4}$$
 (7B)

تدرب وحل المسائل

أوجد مشتقة كلِّ دالة مما يأتي باستعمال النهايات، ثم احسب قيمة المشتقة عند النقاط المعطاة: (مثال 1)

$$f(x) = 4x^2 - 3$$
, $x = 2$, -1 (1)

$$g(t) = -t^2 + 2t + 11, t = 5, 3$$
 (2)

$$m(j) = 14j - 13, j = -7, -4$$
 (3

$$v(n) = 5n^2 + 9n - 17, n = 7, 2$$
 (4

$$r(b) = 2b^3 - 10b$$
, $b = -4$, -3 (5)

أوجد مشتقة كل دالة مما يأتى: (المثالان 2,3)

$$z(n) = 2n^2 + 7n$$
 (7 $y(f) = -11f$ (6

$$b(m) = 3m^{\frac{2}{3}} - 2m^{\frac{3}{2}}$$
 (9 $g(h) = 2h^{\frac{1}{2}} + 6h^{\frac{1}{3}} - 2h^{\frac{3}{2}}$ (8

$$f(x) = 3x^{\frac{1}{2}} - x^{\frac{3}{2}} + 2x^{-\frac{1}{2}}$$
 (11 $n(t) = \frac{1}{t} + \frac{3}{t^2} + \frac{2}{t^3} + 4$ (10

$$p(k) = k^{5.2} - 8k^{4.8} + 3k$$
 (13 $q(c) = c^9 - 3c^5 + 5c^2 - 3c$ (12

،
$$f(h) = -0.0036h^3 - 0.01h^2 + 2.04h + 52$$
 حيث h عدد الساعات التي انقضت من ذلك اليوم. (مثال 4)

أوجد مُعدَّل التغيّر اللحظي لدرجة الحرارة عندما:
$$h = 2, 14, 20$$

$$0 \le h \le 24$$
 أوجد درجة الحرارة العظمى في الفترة: $0 \le h \le 24$

استعمل الاشتقاق لإيجاد النقاط الحرجة، ثم أوجد نقاط القيم العظمى والصغرى لكل دالة مما يأتي على الفترة المعطاة. (مثال 5)

$$f(x) = 2x^2 + 8x, [-5, 0]$$
 (15)

$$r(t) = t^4 + 6t^2 - 2$$
, [1, 4] (16)

$$t(u) = u^3 + 15u^2 + 75u + 115, [-6, -3]$$
 (17)

$$f(x) = -5x^2 - 90x, [-11, -8]$$
 (18)

$$z(k) = k^3 - 3k^2 + 3k$$
, [0, 3] (19)

$$c(n) = \frac{1}{3}n^3 + \frac{1}{2}n^2 - 6n + 8, [-5, 5]$$
 (20)

(21) رياضة : عُد إلى فقرة "لماذا؟" في بداية الدرس. الدالة :
$$h(t)=65t-16\,t^2+3$$
 عندما $t\geq t\leq 1$. (مثال 5)

$$h'(t)$$
 أوجد **(a**

أو جدنقاط القيم العظمى والصغرى للدالة
$$h(t)$$
 في الفترة $h(t)$.

أوجد مشتقة كل دالة مما يأتى: (مثال 6)

$$f(x) = (4x + 3)(x^2 + 9)$$
 (22)

$$g(x) = (3x^4 + 2x)(5 - 3x)$$
 (23)

$$s(t) = (\sqrt{t} + 2)(3t^{11} - 4t)$$
 (24)

$$g(x) = \left(x^{\frac{3}{2}} + 2x\right)(0.5x^4 - 3x)$$
 (25)

$$c(t) = (t^3 + 2t - t^7)(t^6 + 3t^4 - 22t)$$
 (26)

$$q(a) = \left(a^{\frac{9}{8}} + a^{-\frac{1}{4}}\right) \left(a^{\frac{5}{4}} - 13a\right)$$
 (27)

$$f(x) = (1.4x^5 + 2.7x)(7.3x^9 - 0.8x^5)$$
 (28)

استعمل قاعدة مشتقة القسمة لإيجاد مشتقة كل دالةٍ ممّا يأتي: (مثال 7)

$$r(t) = \frac{t^2 + 2}{3 - t^2}$$
 (30 $f(m) = \frac{3 - 2m}{3 + 2m}$ (29

$$f(x) = \frac{\sqrt{x} + 2x}{-x^2 + 3}$$
 (32 $m(q) = \frac{q^4 + 2q^2 + 3}{q^3 - 2}$ (31

$$t(w) = \frac{w + w^4}{\sqrt{w}}$$
 (34 $q(r) = \frac{1.5r^3 + 5 - r^2}{r^3}$ (33

- قام باثع ملابس بإيجاد العلاقة بين سعر قميص، وعدد القطع المبيعة منه يوميًّا، فوجد أنه عندما يكون سعر القميص d ريالًا ، فإن عدد القطع المبيعة يوميًّا يساوي 2d-2d .
- أوجد r(d) التي تمثل إجمالي المبيعات اليومية، عندما يكون سعر القميص dريالًا.
 - r'(d) أو جد (**b**
 - أوجد السعر d الذي تكون عنده قيمة المبيعات اليومية أكبر ما يمكن.

أوجد مشتقة كل دالة مما يأتي، ثم مَثِّل الدالة والمشتقة بيانيًّا على المستوى الإحداثي نفسه.

(إرشاد: يمكنك استعمال الحاسبة البيانية في التمثيل البياني)

$$f(x) = 3x^2 + 2x - 7$$
 (36)

$$g(x) = \sqrt{x} + 4$$
 (37)

$$f(x) = 4x^5 - 6x^3 + 10x - 11$$
 (38)

$$g(x) = \frac{1}{x}$$
 (39)

- (40) المشتقات العليا: لتكن f'(x) مشتقة f'(x)، إذا كانت مشتقة (40) موجودة، فإنها تسمى المشتقة الثانية للدالة f، ويُرمز لها بالرمز f''(x) ، أو الرمز $f^{(2)}(x)$ ، وكذلك إذا كانت مشتقة f''(x) موجودة، فإنها تسمى المشتقة الثالثة للدالة f، ويرمز لها بالرمز f''(x) أو تسمى المشتقات على هذا النحو المشتقات العليا للدالة f. أو جد كلَّا مما يأتي:
 - $f(x) = 4x^5 2x^3 + 6$ المشتقة الثانية للدالة: **(a**
- $g(x) = 2x^7 + 4x^4 7x^3 + 10x$ المشتقة الثالثة للدالة: (**b**
- 2021 $144h(x) = 3x^{-3} + 2x^{-2} + 4x^{2}$: It limits like the limits (c)

مَثِّل منحنى دالة لها الخصائص المعطاة في كلِّ مما يأتي:

- x = -1, 1 المشتقة تساوي 0، عندما (41)
 - x = 4 المشتقة غير معرَّفة، عندما (42
- x = -1, 0, 2 المشتقة تساوي x = -1, 0, 2 عندما (43
 - x = -1, 2, 4 المشتقة تساوي 0، عندما (44)
- 45) **لا تمثيلات متعددة:** في هذا التمرين ستستكشف علاقة المشتقات ببعض الخصائص الهندسية للدوال.
- **a) تحليليًّا:** أوجد مشتقة صيغة مساحة الدائرة بالنسبة لنصف القطر r.
- b) لفظيًّا: وضِّح العلاقةَ بين المعادلة الأصلية ومشتقتها في الفرع a.
- c بيانيًا: ارسم مربعًا طول ضلعه 2a ، ومكعبًا طول ضلعه 2a .
- d) تحليليًّا: اكتب صيغةً تمثِّل مساحة المربع، وأخرى تمثِّل حجم المكعب بدلالة a، ثم أوجد مشتقتي الصيغتين.
- e) لفظيًّا: وَضِّح العلاقة بين المعادلة الأصلية ومشتقتها في الفرع d.

مسائل مهارات التضكير العليا

- (46) اكتشف الخطأ: قام كلٌّ من أحمد وعبدالله بإيجاد $[f'(x)]^2$ للدالة وعبد الله: $f(x) = 6x^2 + 4x$ ، حيث كانت إجابة عبد الله: $144x^2 + 96x + 16$ ، في حين كانت إجابة أحمد: $144x^3 + 144x^2 + 32x$ المالة: المالة المال
 - نحدًّ: أوجد f'(y) علمًا بأن: $f(y) = 10x^2y^3 + 5xz^2 6xy^2 + 8x^5 11x^8yz^7$
 - **48) برهان:** برهن صحة قاعدة مشتقة الضرب، بإثبات أن: $f'(x)g(x) + f(x)g'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) f(x)g(x)}{h}$ إر شاد: ابدأ بالطرف الأيمن، وأضف f(x)g(x+h) إلى البسط واطرحه منه).
 - وبرِّر العبارة الآتية صحيحة أو خاطئة، وبرِّر بيّن ما إذا كانت العبارة الآتية صحيحة أو خاطئة، وبرِّر إجابتك. " $f'(x) = (5n+3) \ x^{5n+2}$ ، فإن $f(x) = x^{5n+3}$ "إذا كانت:
 - (50 برهان: برهن صحة قاعدة مشتقة القسمة، وذلك بإثبات أن: $\frac{f'(x) g(x) f(x) g'(x)}{[g(x)]^2} = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} \frac{f(x)}{g(x)}}{h}$
 - (إرشاد: ابدأ بالطرف الأيمن، ووحِّد المقامات في البسط، ثم أضف f(x) g(x)

51) اكتب: هل من الممكن أن يكون لدالَّتين مختلفتين المشتقة نفسها؟ عزِّز إجابتك بأمثلة.

مراجعة تراكمية

أوجدميل مماس منحنى كل دالةٍ مما يأتي عند النقاط المعطاة: (الدرس 3-4)

- $y = x^2 3x$, (0, 0), (3, 0) (52)
- y = 4 2x, (-2, 8), (6, -8) (53)
- $y = x^2 + 9$, (3, 18), (6, 45) **(54**

احسب كل نهايةٍ ممَّا يأتى: (الدرس 4-2)

- $\lim_{x \to -4} \frac{x^2 16}{x + 4}$ (55)
- $\lim_{x \to -2} \frac{x^2 + 5x + 6}{x^2 + x 2}$ (56)
- $\lim_{x \to 2} \frac{3x + 9}{x^2 5x 24}$ (57)

قدِّر كل نهايةِ ممَّا يأتي: (الدرس 4-1)

- $\lim_{x \to 4^+} \frac{x^2 x 12}{|x 4|}$ (58)
- $\lim_{x\to 0^+} (\sqrt{x} + 2x + 3)$ (59

تدريب على اختبار

- $h(x) = (-7x^2 + 4)(2-x)$ ما مشتقة: (60
 - h'(x) = -14 x A
 - h'(x) = 14 x **B**
 - $h'(x) = -21x^2 28x + 4$ C
 - $h'(x) = 21x^2 28x 4$ **D**
- $y = 2x^2$ ما ميل مماس منحنى $y = 2x^2$ عند النقطة (1, 2)?
 - 4 C
- 1 **A**
- 8 D
- 2 **B**
- $f(x) = 5\sqrt[3]{x^8}$:ما مشتقة (62
- $f'(x) = 225 x^{\frac{5}{3}}$ H $f'(x) = \frac{40}{3} x^{\frac{5}{3}}$ F
- $f'(x) = 225 x^{\frac{8}{3}}$ **J** $f'(x) = \frac{40}{3} x^{\frac{8}{3}}$ **G**

4-5

فيما سنقى

cipab (lucion) (lucion)

المساحة تحت المنحني والتكامل

Area Under the Curve and Integration

لماذا و

درستُ حساب النهايات جبريًّا باستعمال خصائصها. (الدرس 2–4)

والان

- أقرب المساحة تحت
 منحنى دالة باستعمال
 مستطيلات.
- أجد المساحة تحت منحنى
 دالة باستعمال التكامل
 المحدد.

المضر والثنان

right Riemann sum

التكامل

integration

التجزيء المنتظم regular partition التكامل المحدد definite integral الحد الأدنى lower limit upper limit

التكلفة الحدية (الهامشية) هي التكلفة الإضافية المترتبة على إنتاج وحدة إضافية واحدة من منتج ما، ويمكن إيجاد معادلة التكلفة الحدية باشتقاق معادلة التكلفة الحقيقية للمنتج. تُمثل الدالة x نسخة x نسخة من كتاب ما بالريال .

المساحة تحت منحنى سبق أن درست في الهندسة طريقة حساب مساحات الأشكال الأساسية كالمثلث والمستطيل وشبه المنحرف، كما درست حساب مساحات بعض الأشكال المركبة التي تتكون من أشكال أساسية، إلا أن العديد من الأشكال المركبة لا تتكون من أشكال أساسية، مما يستدعي الحاجة إلى طريقة عامة لحساب مساحة أي شكل ثنائي الأبعاد.

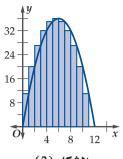
يمكننا تقريب مساحة شكل غير منتظم من خلال استعمال شكل أساسي معلوم المساحة كالمستطيل. فمثلًا يمكننا تقريب مساحة المنطقة المحصورة بين منحنى $f(x) = -x^2 + 12x$ والمحور x على الفترة $f(x) = -x^2 + 12x$ مستطيلات متساوية العرض.

مـثال 1 المساحة تحت منحنى باستعمال مستطيلات

قرِّب مساحة المنطقة المحصورة بين منحنى $f(x) = -x^2 + 12x$ والمحور x على الفترة [0, 12] باستعمال 4، 6، 12 مستطيلًا على الترتيب. استعمال الطرف الأيمن لقاعدة كل مستطيلًا لتحديد ارتفاعه.

مثّل الدالة والمستطيلات كما في الأشكال التالية، باتباع الخطوات التالية:

- 1) أوجد طول الفترة [12, 12] بطرح بدايتها من نهايتها.
- 4 أوجد عرض كل مستطيل بقسمة طول الفترة على عدد المستطيلات، فمثلًا إذا كان عدد المستطيلات نقسم: $4 \div 4 = 12$
 - 3) قسِّم الفترة [0, 12] إلى 4 فترات (لأربعة مستطيلات) طول كل منها يساوي 3
- 4) ارسم على كل فترة جزئية مستطيلًا أحد بعديه يساوي طول هذه الفترة، والبعد الآخر يساوي قيمة الدالة عند الطرف الأيمن للفترة.


فمثلًا ارتفاعات المستطيلات في الشكل (1) هي f(3), f(6), f(6), f(6), ويمكننا استعمال ارتفاعات المستطيلات وأطوال قواعدها لتقريب المساحة المطلوبة.

👣 تاريخ الرياشيات

ثابت بن قرة (221 هـ – 288 هـ) من أوائل من وضع نواة علم التكامل من خلال نظريته" إذا ضوعف عدد أضلاع المضلع المنتظم، المرسوم بين محيطين أو مساحتين إلى ما لا نهاية، صغر الفرق تدريجيًا بين الأضلاع كلما اقترب من المركز، واقترب من الممركز،

الشكل (3) المساحة باستعمال 12 مستطيلًا

$$R_1 = 1 \cdot f(1) = 11$$

 $R_2 = 1 \cdot f(2) = 20$

$$R_3 = 1 \cdot f(3) = 20$$

 $R_3 = 1 \cdot f(3) = 27$

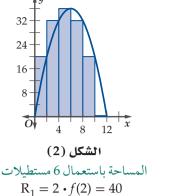
$$R_4 = 1 \cdot f(4) = 32$$

$$R_5 = 1 \cdot f(5) = 35$$

 $R_6 = 1 \cdot f(6) = 36$

$$R_7 = 1 \cdot f(7) = 35$$

$$R_8 = 1 \cdot f(8) = 32$$

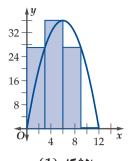

$$R_9 = 1 \cdot f(9) = 27$$

$$R_{10} = 1 \cdot f(10) = 20$$

$$R_{11} = 1 \cdot f(11) = 11$$

$$R_{12} = 1 \cdot f(12) = 0$$

المساحة الكلية 286 وحدة مربعة.


$$R_1=2 \bullet f(2)=40$$

$$R_2 = 2 \cdot f(4) = 64$$

$$R_3 = 2 \cdot f(6) = 72$$

$$R_4 = 2 \cdot f(8) = 64$$

 $R_5 = 2 \cdot f(10) = 40$

$$R_6 = 2 \cdot f(12) = 0$$

الشكل (1)

المساحة باستعمال 4 مستطيلات

$$R_1 = 3 \cdot f(3) = 81$$

$$R_2 = 3 \cdot f(6) = 108$$

$$R_3 = 3 \cdot f(9) = 81$$

$$R_4 = 3 \cdot f(12) = 0$$

المساحة الكلية 270 وحدة مربعة.

إرشاد تقنى

للحصول على ارتفاعات متعددة للمستطيلات، f(x) والتي تمثل بعض قيم باستعمال الآلة الحاسبة البيانية. مثّل الدالة باستعمال تطبيق الرسوم البيانية، وذلك بالضغط على 🕎 <equation-block> ثم كتابة الدالة ويمكن توضيح $f(x) = x^2$ f(x) ارتفاعات المستطيلات باستعمال جدول، وذلك بالضغط على

ومنها اختيار

ويمكنك تعديل فترات قيم x في الجدول بالضغط

5: تحرير إعدادات الجدول..

ثم حدد بداية الجدول والخطوة أو تدريج قيم x.

أي أن المساحة التقريبية باستعمال 4 ، 6 ، 12 مستطيلًا هي بالترتيب:270 وحدة مربعة، 280 وحدة مربعة،

286 وحدة مربعة.

🔽 تحقق من فهمك

مـثال 2

المتعمال [0, 24] قرِّب مساحة المنطقة المحصورة بين منحنى عند $f(x) = -x^2 + 24x$ باستعمال قرِّب مساحة المنطقة المحصورة بين منحنى 6، 8، 12 مستطيلًا على الترتيب. استعمل الطرف الأيمن لقاعدة كل مستطيل لتحديد ارتفاعه.

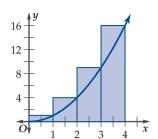
لاحظ أن المستطيلات الأقل عرضًا تمثِّل المساحة المطلوبة بصورة أفضل، وتعطي تقريبًا أدق للمساحة الكلية. وكما استعملنا الأطراف اليمني لقاعدة مستطيل لتحديد ارتفاعاتها ، فإنه يمكننا أيضًا استعمال أطرافها اليسري لتحديد ارتفاعاتها وهذا قد ينتج عنه تقريب مختلف للمساحة.

إن استعمال الأطراف اليمني أو اليسري لقواعد المستطيلات لتحديد ارتفاعاتها قد يؤدي إلى إضافة أجزاء لا تقع بين المنحنى والمحور X ، أو حذف أجزاء تقع بين المنحنى والمحور X . ومن الممكن الحصول على تقريب أفضل للمساحة في بعض الأحيان باستعمال كل من الأطراف اليمني واليسري لقواعد المستطيلات ، ثم أخذ الوسط

المساحة تحت المنحني باستعمال الأطراف اليمني واليسري للمستطيلات

قرِّب مساحة المنطقة المحصورة بين منحني $f(x)=x^2$ والمحور x في الفترة [0,4] باستعمال مستطيلات عرض كل واحدٍ منها وحدة واحدة . استعمل الأطراف اليمني ثم اليسري للمستطيلات لتحديد ارتفاعاتها ، ثم احسب الوسط للتقريبين.

إن استعمال مستطيلات عرض كل منها وحدة واحدة ينتج عنه 4 مستطيلات سواء أكانت الأطراف اليمني أو اليسرى للمستطيلات هي التي تحدد ارتفاعاتها. ويوضح الشكل (1) المستطيلات باستعمال الأطراف اليمني، في حين يوضح الشكل (2) المستطيلات باستعمال الأطراف اليسرى. Ministry of Education 2021 - 1443


المساحة باستعمال الأطراف اليسرى

$$R_1 = 1 \cdot f(0) = 0$$

$$R_2 = 1 \cdot f(1) = 1$$

$$R_3 = 1 \cdot f(2) = 4$$

$$R_4 = 1 \cdot f(3) = 9$$

الشكل (1)

المساحة باستعمال الأطراف اليمني

$$R_1 = 1 \cdot f(1) = 1$$

$$R_2 = 1 \cdot f(2) = 4$$

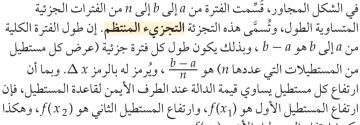
$$R_3 = 1 \cdot f(3) = 9$$

$$R_4 = 1 \cdot f(4) = 16$$

المساحة الكلية 30 وحدة مربعة

أي أن المساحة الناتجة عن استعمال الأطراف اليمني هي 30 وحدة مربعة، بينما المساحة الناتجة عن استعمال الأطراف اليسري هي 14 وحدة مربعة، وهذان تقديران تقع المساحة بينهما، وبحساب الوسط للقيمتين نحصل على تقريب أفضل للمساحة، وهو 22 وحدة مربعة.


🚺 تحقق من فهمك


2) قرِّب مساحة المنطقة المحصورة بين منحنى $\frac{12}{x} = f(x) = \frac{12}{x}$ والمحور x في الفترة [1, 5] باستعمال مستطيلات عرض كل واحد منها وحدة واحدة . استعمل الأطراف اليمني ثم اليسري لقواعد المستطيلات لتحديد ارتفاعاتها، ثم احسب الوسط للتقريبين.

عند تقريب مساحة المنطقة المحصورة بين منحني دالة والمحور x ، فإنه يمكننا استعمال أي نقطة على قاعدة المستطيل لتحديد ارتفاعه، إلا أن النقاط الأكثر شيوعًا هي نقطتا الطرفين الأيمن والأيسر، ونقطة المنتصف.

التكامل الاحظت في مثال 1 أنه كلما قل عرض المستطيلات، فإن مساحتها الكلية تقترب من المساحة الفعلية تحت المنحني، ومن ذلك تستنتج أن المساحة المطلوبة هي نهاية مجموع مساحات المستطيلات عندما يقترب عرض كل

 $f(x_n)$ يكون ارتفاع المستطيل الأخير

يمكن الآن حساب مساحة كل مستطيل من خلال ضرب Δx في ارتفاع ذلك المستطيل، أي أن مساحة المستطيل الأول هي Δx ، ومساحة المستطيل الثاني هي Δx ، وهكذا. وتُعطى المساحة الكلية A للمستطيلات الأول هي $f(x_1)$ من مساحة الكلية Aبمجموع مساحاتها، ويمكن كتابتها باستعمال رمز المجموع.

اجمع المساحات
$$A = f(x_1)\Delta x + f(x_2)\Delta x + \cdots + f(x_n)\Delta x$$

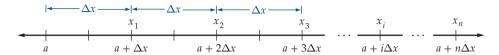
$$\Delta x = \Delta x [f(x_1) + f(x_2) + \cdots + f(x_n)]$$

$$A = \Delta x \sum_{i=1}^n f(x_i)$$

$$A = \sum_{i=1}^n f(x_i) \Delta x$$
 خواص رمز المجموع
$$A = \sum_{i=1}^n f(x_i) \Delta x$$

قراءة الرياضيات

 $\sum_{i=1}^{n} f(x_i) \Delta x$ تُقرأ العبارة


كالآتي مجموع حواصل

 Δx فی $f(x_i)$ من

i = n إلى i = 1

رمز المجموع

ولتسهيل الحسابات مستقبلًا، فإنه يمكننا اشتقاق صيغة لإيجاد أي x_i . فبما أن عرض أيٍّ من المستطيلات هو Δx ، ويساوى الفرق بين أي قيمتين متتاليتين من قيم x_i . وبالنظر إلى خط الأعداد أدناه:

يمكننا ملاحظة أن $x_i = a + i\Delta x$. ولهذه العلاقة أهميتها عند إيجاد المساحة تحت منحنى أي دالة لاحقًا.

لاحظ أنه كلما اقترب عرض المستطيل من الصفر، فإن عدد المستطيلات يقترب من المالانهاية، وتُسمَّى هذه النهاية التكامل المحدد، ويعبَّر عنها برمز خاص.

قراءة الرياضيات

رمز التكامل المحدد $\int_a^b f(x)dx$ يقرأ الرمز b التكامل من a إلى b للدالة a بالنسبة لـ a

مفهوم أساسي التكامل المحدد

يُعبر عن مساحة المنطقة المحصورة بين منحنى دالة والمحور x في الفترة [a,b] بالصيغة

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x, \Delta x = \frac{b-a}{n}, x_i = a + i \Delta x$$

حيث a الحد الأدنى، و b الحد الأعلى، وتُسمّى هذه الطريقة مجموع ريمان الأيمن.

شُمي مجموع ريمان بهذا الاسم نسبةً للعالم الألماني بيرنارد ريمان (1866 - 1826). والذي يُعزى إليه إيجاد صيغة لتقريب المساحة المحصورة باستعمال النهايات. ويمكننا تعديل الصيغة باستعمال الأطراف اليُسرى أو نقاط المنتصف لتحديد ارتفاعات المستطيلات.

وتسمى عملية حساب التكامل تكاملًا، وستُسهِّل صيغ المجاميع الآتية حساب التكامل المحدد.

$$\sum_{i=1}^{n} c = cn \qquad , \quad \text{عدد ثابت } c$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \qquad \sum_{i=1}^{n} i^4 = \frac{6n^5 + 15n^4 + 10n^3 - n}{30}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \qquad \sum_{i=1}^{n} i^5 = \frac{2n^6 + 6n^5 + 5n^4 - n^2}{12}$$

تُستعمل خاصيتا المجموع الآتيتان لحساب بعض التكاملات:

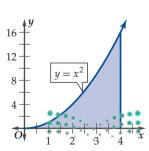
$$\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} a_i \pm \sum_{i=1}^{n} b_i$$
 , $\sum_{i=1}^{n} ci = c \sum_{i=1}^{n} i$, عدد ثابت ,

تنبيه(

لمجموع

c إن مجموع عدد ثابت $\sum_{i=1}^{n} 5 = 5$ هو c n فمثلاً

المساحة تحت منحنى باستعمال التكامل


استعمل النهايات؛ لإيجاد مساحة المنطقة المحصورة بين منحنى . $\int_0^4 x^2 \ dx = [0,4] \ ,$ والمحور x في الفترة $y=x^2$

. x_i ، Δx ابدأ بإيجاد

مـثال 3

$$\Delta x$$
 صيغة مي $\Delta x = \frac{b-a}{n}$
 $b=4$, $a=0$ $\qquad = \frac{4-0}{n} = \frac{4}{n}$
 x_i صيغة $x_i = a+i \Delta x$
 $a=0$, $\Delta x = \frac{4}{n}$ $\qquad = 0+i\frac{4}{n} = \frac{4i}{n}$

احسب التكامل المحدد الذي يُعطي المساحة المطلوبة.

مرارة التعليم Ministry of Education 2021 - 1443

المحدد
$$f(x_i) = x_i^2 \qquad = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$$

$$f(x_i) = x_i^2 \qquad = \lim_{n \to \infty} \sum_{i=1}^n (x_i)^2 \Delta x$$

$$x_i = \frac{4i}{n}, \Delta x = \frac{4}{n} \qquad = \lim_{n \to \infty} \sum_{i=1}^n \left(\frac{4i}{n}\right)^2 \left(\frac{4}{n}\right)$$

$$= \lim_{n \to \infty} \frac{4}{n} \sum_{i=1}^n \left(\frac{4i}{n}\right)^2$$

$$= \lim_{n \to \infty} \frac{4}{n} \sum_{i=1}^n \frac{16i^2}{n^2}$$

$$= \lim_{n \to \infty} \frac{4}{n} \left(\frac{16}{n^2} \sum_{i=1}^n i^2\right)$$

$$= \lim_{n \to \infty} \frac{4}{n} \left(\frac{16}{n^2} \cdot \frac{n(n+1)(2n+1)}{6}\right)$$

$$= \lim_{n \to \infty} \frac{4}{n} \left(\frac{16n(2n^2 + 3n + 1)}{6n^2}\right)$$

$$= \lim_{n \to \infty} \frac{64n(2n^2 + 3n + 1)}{6n^2}$$

$$= \lim_{n \to \infty} \frac{64(2n^2 + 3n + 1)}{6n^2}$$

$$= \lim_{n \to \infty} \frac{64(2n^2 + 3n + 1)}{6n^2}$$

$$= \lim_{n \to \infty} \frac{64}{6} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)$$

$$= \lim_{n \to \infty} \frac{64}{6} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)$$

$$= \lim_{n \to \infty} \frac{64}{6} \left[2 + 3(0) + 0\right] = \frac{64}{3} \approx 21.33$$

إرشادات للدراسة

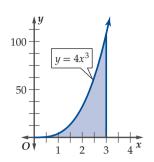
لنهايات

حلل كل مجموع بحيث تتضمن العبارات الباقية إما أعدادًا ثابتة أو i فقط، ثم طبق صيغة المجموع المناسبة.

تحقق من فهمك

استعمل النهايات؛ لإيجاد مساحة المنطقة المحصورة بين منحنى الدالة والمحور x والمعطاة بالتكامل المحدد في كلِّ مما يأتي:

$$\int_0^3 x \, dx$$
 (3B $\int_0^1 3x^2 \, dx$ (3A


أى أن مساحة المنطقة المطلوبة هي 21.33 وحدة مربعة تقريبًا.

يمكننا أيضًا حساب مساحات المناطق باستعمال النهايات حال كون نقطة الأصل ليست حدًّا أدنى لها.

مرارة الحليم Ministry of Education 2021 - 1443

المساحة تحت منحنى باستعمال التكامل

مـثال 4

استعمل النهايات؛ لإيجاد مساحة المنطقة المحصورة بين منحنى $y=4x^3$. $\int_1^3 4x^3\ dx$. $\int_1^3 4x^3\ dx$

$$\Delta x$$
 صيغة $\Delta x = \frac{b-a}{n}$
 $b=3$, $a=1$ $\qquad = \frac{3-1}{n} = \frac{2}{n}$
 x_i صيغة $x_i = a+i$

$$a = 1, \Delta x = \frac{2}{n}$$
 $= 1 + i\frac{2}{n} = 1 + \frac{2i}{n}$

احسب التكامل المحدد والذي يُعطى المساحة المطلوبة.

$$\int_{1}^{3} 4x^{3} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$
 غريف التكامل المحدد $f(x_{i}) = 4(x_{i})^{3} = \lim_{n \to \infty} \sum_{i=1}^{n} 4(x_{i})^{3} \Delta x$

$$x_i = 1 + \frac{2i}{n}, \Delta x = \frac{2}{n} = \lim_{n \to \infty} \sum_{i=1}^{n-1} 4\left(1 + \frac{2i}{n}\right)^3 \left(\frac{2}{n}\right)$$

$$=\lim_{n\to\infty}\frac{8}{n}\sum_{i=1}^n\left(1+\frac{2i}{n}\right)^3$$

$$\left(1 + \frac{2i}{n}\right)^3 \mod = \lim_{n \to \infty} \frac{8}{n} \sum_{i=1}^n \left[1 + 3\left(\frac{2i}{n}\right) + 3\left(\frac{2i}{n}\right)^2 + \left(\frac{2i}{n}\right)^3\right]$$

$$= \lim_{n \to \infty} \frac{8}{n} \sum_{i=1}^{n} \left(1 + \frac{6i}{n} + \frac{12i^2}{n^2} + \frac{8i^3}{n^3} \right)$$

$$=\lim_{n\to\infty}\frac{8}{n}\left(\sum_{i=1}^n1+\sum_{i=1}^n\frac{6i}{n}+\sum_{i=1}^n\frac{12i^2}{n^2}+\sum_{i=1}^n\frac{8i^3}{n^3}
ight)$$
خصائص المجموع

$$=\lim_{n o\infty}rac{8}{n}\left(\sum_{i=1}^{n}\mathbf{1}+rac{6}{n}\sum_{i=1}^{n}i+rac{12}{n^2}\sum_{i=1}^{n}i^2+rac{8}{n^3}\sum_{i=1}^{n}i^3
ight)$$
خصائص المجموع

$$= \lim_{n \to \infty} \frac{8}{n} \left(n + \frac{6}{n} \cdot \frac{n(n+1)}{2} + \frac{12}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{8}{n^3} \cdot \frac{n^2(n+1)^2}{4} \right)$$

وْغ واضرب
$$=\lim_{n\to\infty}\left(\frac{8n}{n}+\frac{48n(n+1)}{2n^2}+\frac{96n(2n^2+3n+1)}{6n^3}+\frac{64n^2(n^2+2n+1)}{4n^4}\right)$$

$$= \lim_{n \to \infty} \left(8 + \frac{24(n+1)}{n} + \frac{16(2n^2 + 3n + 1)}{n^2} + \frac{16(n^2 + 2n + 1)}{n^2} \right)$$

اقسم
$$= \lim_{n \to \infty} \left[8 + 24 \left(1 + \frac{1}{n} \right) + 16 \left(2 + \frac{3}{n} + \frac{1}{n^2} \right) + 16 \left(1 + \frac{2}{n} + \frac{1}{n^2} \right) \right]$$

خصائص النهايات =
$$\lim_{n \to \infty} 8 + 24 \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) + 16 \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2}\right) + 16 \lim_{n \to \infty} \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)$$

بسّط
$$= 8 + 24(1+0) + 16(2+0+0) + 16(1+0+0) = 80$$

أي أن مساحة المنطقة المطلوبة هي 80 وحدة مربعة.

تحقق من فهمك

المجاميع، أوجد مجاميع $\,i\,$ قيم $\,i\,$ أو أي

ثوابت أخرى.

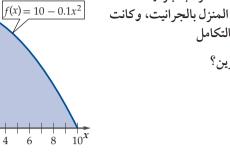
استعمل النهايات؛ لإيجاد مساحة المنطقة المحصورة بين منحنى الدالة والمحور x والمعطاة بالتكامل المحدد في كلِّ مما يأتي:

pرارة التعليم Ministry of Education 2021 - 1443

$$\int_2^4 x^3 dx$$
 (4B)

$$\int_{1}^{3} x^{2} dx$$
 (4A)

🧓 الريطامع الجياة


الجرانيت هو صخر نارى يتميز بنسيج خشن يكسبه مظهرًا فريدًا،

وهو مقاوم لعوامل الأكسدة، لذلك يستعمل في تبليط الأرضيات.

🥡 مثال 5 من واقع الحياة

المساحة تحت منحني

بلاط: يكلِّف تبليط القدم المربعة الواحدة من فناء منزل بالجرانيت 22.4 ريالًا. إذا تم تبليط ممرين متطابقين في فناء المنزل بالجرانيت، وكانت المساحة بالقدم المربعة لأيِّ من الممرين تُعطى بالتكامل ثما تكلفة تبليط الممرين؟ $\int_{1}^{10} (10 - 0.1x^{2}) dx$

$$\Delta x = \frac{b-a}{n}$$

$$a = 0, b = 10$$

$$x_i = \frac{10-0}{n} = \frac{10}{n}$$

$$x_i = a + i \Delta x$$

$$a = 0, \Delta x = \frac{10}{n}$$

$$= 0 + i \frac{10}{n} = \frac{10i}{n}$$

. x_i ، Δx ابدأ بإيجاد

احسب التكامل المحدد والذي يُعطى المساحة المطلوبة.

ويسَعد
$$\int_{0}^{10} (10-0.1x^2) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

$$f(x_i) = 10 - 0.1x_i^2 \qquad = \lim_{n \to \infty} \sum_{i=1}^{n} (10 - 0.1x_i^2) \Delta x$$

$$x_i = \frac{10i}{n}, \Delta x = \frac{10}{n} \qquad = \lim_{n \to \infty} \sum_{i=1}^{n} \left[10 - 0.1 \left(\frac{10i}{n} \right)^2 \right] \cdot \frac{10}{n}$$

$$= \lim_{n \to \infty} \frac{10}{n} \sum_{i=1}^{n} \left[10 - \frac{10i^2}{n^2} \right]$$

$$= \lim_{n \to \infty} \frac{10}{n} \left(\sum_{i=1}^{n} 10 - \sum_{i=1}^{n} \frac{10i^2}{n^2} \right)$$

$$= \lim_{n \to \infty} \frac{10}{n} \left(\sum_{i=1}^{n} 10 - \frac{10}{n^2} \sum_{i=1}^{n} i^2 \right)$$

$$= \lim_{n \to \infty} \frac{10}{n} \left(10n - \frac{10}{n^2} \cdot \frac{n(n+1)(2n+1)}{6n^3} \right)$$

$$= \lim_{n \to \infty} \left(\frac{100n}{n} - \frac{100n(2n^2 + 3n + 1)}{6n^3} \right)$$

$$= \lim_{n \to \infty} \left(100 - \frac{50(2n^2 + 3n + 1)}{3n^2} \right)$$

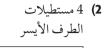
$$= \lim_{n \to \infty} \left[100 - \frac{50}{3} \left(2 + \frac{3}{n} + \frac{1}{n^2} \right) \right]$$

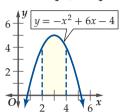
$$= \lim_{n \to \infty} 100 - \frac{50}{3} \lim_{n \to \infty} \left(2 + \frac{3}{n} + \frac{1}{n^2} \right)$$

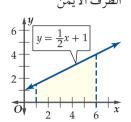
$$= \lim_{n \to \infty} 100 - \frac{50}{3} (2 + 0 + 0) = 66 \frac{2}{3} \approx 66.67$$

أي أن مساحة أيِّ من الممرين تساوي 66.67 ft² تقريبًا؛ لذا فإن تكلفة تبليط الممرين هي ر بالا تقربياً. $22.4 \times (66.67 \times 2)$

🚺 تحقق من فهمك


5) طلاء: لدى عبد الله كمية من الطلاء تكفي لطلاء 30 ft² ، هل تكفي هذه الكمية لطلاء جزأين من جدار مساحة كل منهما بالقدم المربعة تُعطَى بالتكامل $\int_{0}^{5} (5-0.2x^{2})dx$ برِّر إجابتك. Ministry of Education 2021 - 1443


تدرب وحل المسائل


قرِّب مساحة المنطقة المظللة تحت منحنى الدالة مستعملًا الطرف المعطى لتحديد ارتفاعات المستطيلات المعطى عددها في كلِّ من الأشكال أدناه: (مثال 1)

> 1) 5 مستطبلات الطرف الأيمن

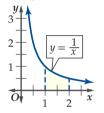
8 مستطيلات

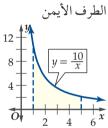
5) أرضيات: يرغب أحمد في تبليط جزء من فناء منزله على شكل (مثال ۱ مثال) . $f(x) = (-x^2 + 10x)^{0.5}$ نصف دائرة تمثله

(b) إذا قرَّر أحمد تقريب المساحة باستعمال الأطراف اليمني

واليسري معًا كما في الشكل أدناه ، فكم تكون المساحة؟ $f(x) = (-x^2 + 10x)^{0.5}$

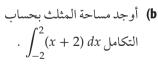
أي التقريبين أقرب إلى المساحة الحقيقية؟ فسِّر إجابتك.

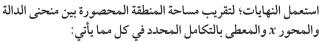

قرِّ مساحة المنطقة المظلَّلة تحت منحني الدالة في كلِّ من الأشكال الآتية مستعملًا الأطراف اليمني ثم اليسرى؛ لتحديد ارتفاعات المستطيلات


المعطى عرض كلِّ منها، ثم أوجد الوسط للتقريبين: (مثال 2)

لمستطيلات عرض كل منها وحدة واحدة.

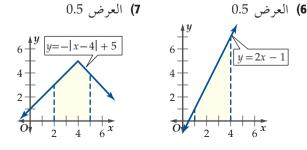
a قرّب مساحة المنطقة نصف الدائرية باستعمال الأطراف اليسرى

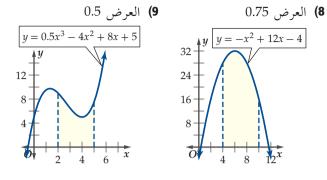

- $\int_{0}^{4} (4x x^{2}) dx$ (13) $\int_{1}^{3} (2x^{2} + 3) dx$ (12)
- $\int_{2}^{4} (-3x + 15) dx$ (15) $\int_{2}^{4} (-x^{2} + 6x) dx$ (14)
 - $\int_{1}^{3} 12x \, dx$ (17 $\int_{1}^{5} (x^{2} x + 1) \, dx$ (16


18) طباعة: ارجع إلى فقرة "لماذا؟" في بداية الدرس. إذا زاد عدد الكتب المطبوعة يوميًّا من 1000 كتاب إلى 1500 كتاب، فأوجد قيمة تكلفة الزيادة والمعطاة بالتكامل

(5 مثال) .
$$\int_{1000}^{1500} (10 - 0.002x) dx$$

- 19) يمكن حساب التكاملات المحددة عندما يكون أحد حدي التكامل موجبًا والآخر
- a) أوجد طول قاعدة وارتفاع المثلث، ثم مساحته باستعمال قانون مساحة





$$\int_{-3}^{-2} -5x \, dx$$
 (23
$$\int_{-4}^{-2} (-x^2 - 6x) \, dx$$
 (22

$$\int_{-2}^{0} (x^{3} - 2x) dx$$
 (25)
$$\int_{-2}^{0} (2x + 6) dx$$
 (24)
$$2021 - 1443$$

استعمل النهايات؛ لتقريب مساحة المنطقة المحصورة بين منحني الدالة والمحور x والمعطى بالتكامل المحدد في كل مما يأتي: (المثالان 3,4)

171

مراجعة تراكمية

أوجد مشتقة كل دالة مما يأتى: (الدرس 4-4)

$$j(x) = (2x^3 + 11x)(2x^8 - 12x^2)$$
 (36)

$$f(k) = (k^{15} + k^2 + 2k)(k - 7k^2)$$
 (37)

$$s(t) = (\sqrt{t} - 7)(3t^8 - 5t)$$
 (38)

(4-3 ميل مماس منحنى كل دالة مما يأتى عندما x = 1

$$y = x^3$$
 (39)

$$y = x^3 - 7x^2 + 4x + 9$$
 (40)

$$y = (x+1)(x-2)$$
 (41)

أوجد كل نهاية مما يأتي (إن وجدت): (الدرس 4-2)

$$\lim_{x \to 0} \frac{x^2 + 3x}{x}$$
 (42)

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1}$$
 (43)

$$\lim_{x \to 3} \frac{x^2 - 9}{x^3 - 27}$$
 (44)

تدريب على اختبار

- x ما مساحة المنطقة المحصورة بين $y = -x^2 3x + 6$ والمحور (45) في الفترة [2, 6] ؟
 - **A** 93.33 وحدة مربعة تقريبًا
 - **B** 90 وحدة مربعة تقريبًا
 - 86.67 **C** وحدة مربعة تقريبًا
 - 52 **D** وحدة مربعة تقريبًا
 - $?n(a) = \frac{4}{a} \frac{5}{a^2} + \frac{3}{a^4} + 4a$ أيٌّ مما يأتي يمثِّل مشتقة (46

$$n'(a) = 8a - 5a^2 + 3a^4$$
 A

$$n'(a) = 4a^2 - 5a^3 + 3a^4 + 4$$
 B

$$n'(a) = -\frac{4}{a^2} + \frac{5}{a^3} - \frac{3}{a^5} + 4$$
 C

$$n'(a) = -\frac{4}{a^2} + \frac{10}{a^3} - \frac{12}{a^5} + 4$$
 D

- $\oint \lim_{x \to 3} \frac{x^2 + 3x 10}{x^2 + 5x + 6}$ and all 47
- $\frac{1}{15}$ A

 $\frac{4}{15}$ **D**

 $\frac{2}{15}$ **B**

- استعمل النهايات لتقريب مساحة المنطقة المحصورة بين منحني الدالة والمحور x ، والمُعطى بالتكامل المحدد في كل مما يأتي:
 - $\int_{-2}^{0} (-x^3) dx$ (27 $\int_{-3}^{-1} (-2x^2 7x) dx$ (26)
 - $\int_{-2}^{-1} \left(-\frac{1}{2}x + 3 \right) dx$ (29) $\int_{-1}^{3} 2 dx$ (28)
- 30) 🛂 تمثيلات متعددة: سوف تستقصى في هذه المسألة عملية إيجاد مساحة المنطقة المحصورة بين منحنيين.
- وني $f(x) = -x^2 + 4$ بيانيًّا: مَثِّل منحنيي $f(x) = -x^2 + 4$ في (a المستوى الإحداثي نفسه، وظلِّل المساحتين اللتين يمثُّلهما $\int_0^1 (-x^2+4) dx$, $\int_0^1 x^2 dx$ التكاملان
 - . $\int_{0}^{1} (-x^{2}+4) dx$, $\int_{0}^{1} x^{2} dx$ اتحلیلیًا: احسب (b
- الفظيًا: وضّح لماذا تكون مساحة المنطقة المحصورة بين المنحنيين مساويةً لـ
- قيمة القيمة . $\int_0^1 (-x^2+4) dx \int_0^1 x^2 dx$ باستعمال القيم التي أوجدتها في الفرع b.
- $\int_0^1 [f(x) g(x)] dx$ ثم احسب ، f(x) g(x) أو جد (d لفظيًّا: خمِّن طريقة إيجاد مساحة المنطقة المحصورة بين (e

مسائل مهارات التفكير العليا

- 31) اكتشف الخطأ: سُئل ماجد وخالد عن دقة تقريب المساحة تحت منحنى باستعمال أطراف المستطيلات، فأجاب ماجد: إنه عند تقريب المساحة تحت منحني باستعمال أطراف المستطيلات اليمني، فإن المساحة الناتجة تكون أكبر دائمًا من المساحة الحقيقية تحت المنحنى. في حين أجاب خالد: إن المساحة المحسوبة باستعمال أطراف المستطيلات اليسري تكون أكبر دائمًا من المساحة الحقيقية تحت المنحني. أيهما كانت إجابته صحيحة ؟ برِّر إجابتك.
- . f المقطع الرأسي العرضي لنفق يُعطى بالدالة (32) اشرح کیف یمکن حساب حجم النفق باستعمال $\int_{0}^{a} f(x) dx$ حیث عرض النفق، إذا كان طوله معلومًا. برِّر إجابتك d
 - 33) اكتب: اكتب ملخصًا للخطوات المتبعة لتقريب مساحة المنطقة المحصورة بين منحنى دالة والمحور x على فترة معطاة.
 - $\int_{0}^{t} (x^{2} + 2) dx$ تحدً: أوجد (34
- 35) اكتب: وضّح إمكانية استعمال المثلثات أو الدوائر في تقريب المساحة تحت المنحنيات. أي الشكلين يعطي تقريبًا أفضل برأيك؟

2021 - 1443

172

4-6

فيما سيق: درستُ استعمال النهايات

والانانا

لتقريب المساحة تحت

أجدُ دوال أصلية.
 أستعُمل النظرية الأساسية

المضوداتين

منحنى دالة. (الدرس 5-4)

النظرية الأساسية في التفاضل والتكامل The Fundamental Theorem of Calculus

لماذا و

سقط قلم من جيب علي في أثناء ركوبه منطادًا، فهوى نحو الأرض. إذا كانت سرعة سقوط القلم المتجهة بالقدم لكل ثانية تُعطى بـ v(t)=-32t، فمن الممكن إيجاد الارتفاع الذي سقط منه القلم.

في التفاضل والتكامل لأجد التكامل المحدد.

antiderivative antiderivative التكامل غير المحدد indefinite integral النظرية الأساسية في التفاضل والتكامل Fundamental Theorem of

الدوال الأصلية والتكامل غير المحدد تعلمت في الدرسين 3-4 و4-4، أنَّه إذا أُعطِيْتَ موقع جسم بـ 2x + 2x + 3، فإن العبارة التي تمثِّل سرعة الجسم هي مشتقة f(x) أو 2x + 2 = 3، لكن إذا أُعطيت عبارة تمثِّل السرعة، وطُلِب إليك إيجاد صيغة المسافة التي تم إيجاد السرعة منها، فلا بد من وجود طريقة للعمل عكسيًّا والعودة إلى الدالة الأصلية وإلغاء الاشتقاق.

وبمعنى آخر، فإننا نبحث عن F(x)، بحيث إن F(x)=f(x) و تُسمَّى وأخر، فإننا نبحث عن والله أصلية للدالة F(x)

مثال 1 إيجاد الدوال الأصلية

أوجد دالة أصلية لكل دالة مما يأتى:

 $f(x) = 3x^2$ (a

لنبحث عن دالة مشتقتها $3x^2$. تذكر أن قوة x في مشتقة دالة القوة أقل بواحد من قوة x في الدالة. وعليه فإن $F(x)=x^3$ قوة المتغير x في x ستكون x ، وبما أن معامل x في مشتقة الدالة يساوي قوة x في الدالة، فإن x^3 ستكقق المطلوب. حيث إن مشتقة x^3 هي x^3 أو x^3 .

إن x^3 ليست الدالة الوحيدة التي تحققُ المطلوب، فمثلًا $G(x)=x^3+10$ تحقق المطلوب أيضًا؛ لأن $G'(x)=x^3+10$ تحقق المطلوب. وكذلك $G'(x)=3x^3-1+0=3x^2$

 $f(x) = -\frac{8}{x^9}$ (b)

أعد كتابة f(x) بقوى سالبة لتحصل على $F(x) = -8x^{-9}$ ، وبما أن قوة x في مشتقة الدالة أقل بواحد من قوة x في الدالة ، فإن قوة x في F(x) ستكون F(x) ستكون F(x) عند تكون $F(x) = x^{-8}$ دالة أصلية للدالة $F(x) = x^{-8} = -8x^{-9}$ فمشتقة $x^{-8} = x^{-8} = -8x^{-9}$. لاحظ أن كلًّا من $x^{-8} = x^{-8} = -8x^{-9}$ تمثّل دالة أصلية للدالة $x^{-8} = x^{-8} = x^{-9}$.

📫 تحقق من فهمك

أوجد دالَّتين أصليتين مختلفتين لكل دالة مما يأتي:

 $-3x^{-4}$ (1B 2x (1A

في المثال 1 لاحظ أن إضافة أو طرح ثابت لدالَّةٍ أصلية ينتج عنه دالة أصلية أخرى، وبشكل عام فإن إضافة أو طرح ثابت C لدالة أصلية يُنتج دالة أصلية أخرى ؛ لأن مشتقة الثابت صفر. وعليه فإن هناك عددًا لانهائيًّا من الدوال الأصلية لأي دالة. والشكل العام للدالة الأصلية هو الشكل الذي يحوي الثابت C.

وزارة التعطيم Ministry of Education 2021 - 1443 كما في المشتقات، فإن هناك قواعد لإيجاد الدالة الأصلية.

قواعد الدالة الأصلية

مفهوم أساسي

$$F(x) = \frac{x^{n+1}}{n+1} + C$$
 . فإن: $f(x) = x^n$ عدد نسبي لا يساوي $f(x) = x^n$.

قاعدة القوة

إذا كان
$$k$$
 ، -1 عددًا ثابتًا، فإن معدد نسبي لا يساوي k عددًا ثابتًا، فإن:

قاعدة ضرب دالة

$$.F(x) = \frac{k x^{n+1}}{n+1} + C$$

القوة في عدد ثابت

إذا كان لـ g(x)، f(x) على الترتيب، إذا كان لـ g(x)

قاعدة المجموع والفرق

. $f(x) \pm g(x)$ دالة أصلية لـ $F(x) \pm G(x)$

إرشادات للدراسة

الدوال الأصلية

هي دالة أصلية F(x) = k xفإن f(x)=3

له f(x) = k ، فمثلًا ، إذا كان . F(x) = 3x

ربط المفردات

التكامل غير المحدد

سبب تسمية التكامل غير المحدد بهذا الاسم أنه لا يُعبر عن دالة محددة، بل عن عدد لا نهائي من الدوال

قواعد الدوال الأصلية

أوجد جميع الدوال الأصلية لكل دالة مما يأتي:

 $f(x) = 4x^7$ (a)

مـثال 2

الدالة المعطاة
$$f(x) = 4 x^7$$

قاعدة ضرب دالة القوة في عدد ثابت
$$F(x) = \frac{4 x^{7+1}}{7+1} + C$$

$$=\frac{1}{2}x^8+C$$

$$f(x) = \frac{2}{x^4}$$
 (b)

الدالة المعطاة
$$f(x) = \frac{2}{x^4}$$

أعد كتابة الدالة بقوة سالبة
$$=2 x^{-4}$$

قاعدة ضرب دالة القوة في عدد ثابت
$$F(x) = \frac{2 \, x^{-\,4\,+\,1}}{-4\,+\,1} + C$$

$$=-\frac{2}{3}x^{-3}+C=-\frac{2}{3x^3}+C$$

$$f(x) = x^2 - 8x + 5$$
 (c

الدالة المعطاة
$$f(x) = x^2 - 8x + 5$$

$$x$$
 أعد كتابة الدالة بدلالة قوى $= x^2 - 8x^1 + 5x^0$

قواعد الدالة الأصلية
$$F(x) = \frac{x^2 + 1}{2 + 1} - \frac{8x^{1+1}}{1+1} + \frac{5x^{0+1}}{0+1} + C$$

$$= \frac{1}{2}x^3 - 4x^2 + 5x + C$$

🚺 تحقق من فهمك

أوجد جميع الدوال الأصلية لكل دالة مما يأتى:

$$f(x) = 8x^7 + 6x + 2$$
 (2C $f(x) = \frac{10}{x^3}$ (2B $f(x) = 6x^4$ (2A)

يُعطى الشكل العام للدَّالة الأصلية باسم ورمز خاصَّين.

التكامل غير المحدد

مفهوم أساسي

يُعطى التكامل غير المحدد للدالة f بالصيغة f(x) بالصيغة f(x) ، حيث f(x) ، حيث f(x) دالة أصلية لـ f(x)وC ثابت.

🌈 مثال 3 من واقع الحياة

التكامل غير المحدد

👸 الريطاعع الحياة

السقوط الحر قبل أربعمائة عام

تقريبًا، استنتج جاليليو جاليلي أن لجميع الأجسام التي تسقط سقوطًا حرًّا التسارع نفسه ، باهمال تأثير

الهواء، وأن هذا التسارع لا يتأثر بأي

من مادة الجسم الساقط أو وزنه أو الارتفاع الذي سقط منه.

فيزياء: أجرى طلاب الصف الثالث الثانوي في إحدى المدارس الثانوية تجربة فيزيائية تتضمن إسقاط كرة من نافذة الفصل التي ترتفع عن سطح الأرض بـ v(t)=-32t، وتمثّل v(t)=-32t سرعة الكرة المتجهة اللحظية بالأقدام بعد t ثانية من سقوطها.

من سقوطها . أو جد دالَّة موقع الكرة s(t) بعد t ثانية من سقوطها .

v(t) لإيجاد دالة الموقع، أو جد الدالة الأصلية لـ

العلاقة بين الموقع والسرعة المتجهة
$$s(t) = \int \!\! v(t) \, dt$$

$$v(t) = -32t \qquad \qquad = \int -32t \ dt$$

قاعدة ضرب دالة القوة في عدد ثابت
$$= -\frac{32t^{1+1}}{1+1} + C$$

$$=-16t^2+C$$

أوجد C بتعويض 30 ft للارتفاع الابتدائي ، 0s للزمن الابتدائي.

$$v(t)$$
 الدالة الأصلية ل $s(t) = -16t^2 + C$

$$s(t) = 30, t = 0$$
 $30 = -16(0)^2 + C$

بسّط
$$30 = C$$

. $s(t) = -16t^2 + 30$ أي أن دالة موقع الكرة هي

b) أوجد الزمن الذي تستغرقه الكرة حتى تصل إلى سطح الأرض.

$$.\,s(t)=0$$
 حُلّ المعادلة

دالة موقع الكرة
$$s(t) = -16t^2 + 30$$

$$s(t) = 0$$
 $0 = -16t^2 + 30$

اطرح 30 من كلا الطرفين
$$-30 = -16t^2$$

$$-16$$
 اقسم كلا الطرفين على $1.875pprox t^2$

غُذ الجذر التربيعي الموجب لكلا الطرفين خُذ الجذر التربيعي الموجب لكالا الطرفين

أي أن الكرة ستستغرق \$1.369 تقريبًا حتى تصل إلى سطح الأرض.

🗹 تحقق من فهمك

- ته سقوط حُر: عند قيام فنِّي بإصلاح نافذة برج على ارتفاع 120 ft سقطت محفظتُه نحو الأرض، وتمثّل v(t) = -32 t سرعة المحفظة المتجهة اللحظية بالأقدام بعد t ثانية من سقوطها.
 - المحفظة s(t) بعد t ثانية من سقوطها.
 - B) أوجد الزمن الذي تستغرقُهُ المحفظة حتى تصل إلى سطح الأرض.

النظرية الأساسية في التفاضل والتكامل لاحظ أن الرمز المُستعمل للتكامل غير المحدد يبدو شبيهًا بالرمز الدي استُعمل للتكامل المحدد في الدرس 5-4 ، إذ إن الفرق الوحيد هو عدم ظهور حدَّي التكامل الأعلى والأدنى في رمز التكامل فير المحدد. إن إيجاد الدالة الأصلية لدالة ما: هو طريقة مختصرة لحساب التكامل المحدد للدالة نفسها باستعمال مجموع ريمان. وهذه العلاقة بين التكاملات المحددة والدوال الأصلية ذات أهمية كبيرة، وتُسمى النظرية الأساسية في التفاضل والتكامل.

النظرية الأساسية في التفاضل والتكامل

مفهوم أساسي

إذا كانت F(x) دالةً أصلية للدالة المتصلة f(x)، فإن

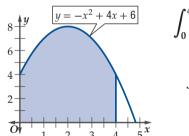
$$\int_a^b f(x) \, dx = F(b) - F(a)$$

. $F(x)igg|_a^b$ ويمكن التعبير عن الطرف الأيمن من هذه العبارة بالرمز

📆 تاريخ الرياشيات

ماريا أجنسن (1799–1718) عالمة إيطالية برعت في اللغات والفلسفة والرياضيات، ويُعدُّ Analytical Institutions کتابها أول كتاب ناقش حسابى التفاضل والتكامل معًا.

من نتائج النظرية الأساسية في التفاضل والتكامل أنها ربطت بين التكاملات والمشتقات، فالتكامل هو عملية إيجاد دوال أصلية، في حين أن الاشتقاق هو عملية إيجاد مشتقات. لذا فإن عمليتي التكامل والاشتقاق هما عمليتان عكسيتان، ويمكننا استعمال النظرية الأساسية في التفاضل والتكامل لحساب التكاملات المحددة دون الحاجة إلى


المساحة تحت منحني مـثال 4

استعمل النظرية الأساسية في التفاضل والتكامل لحساب مساحة المنطقة المحصورة بين منحني كل دالة مما يأتي والمحور x على الفترة المعطاة:

النظرية الأساسية في التفاضل والتكامل
$$\int_1^3 4x^3 \, dx = x^4 + C \Big|_1^3$$
 $= ((3)^4 + C) - ((1)^4 + C)$ $= 81 - 1 = 80$

أى أن مساحة المنطقة المحصورة بين منحنى $y = 4 x^3$ والمحور x على الفترة [1,3] هي 80 وحدة مربعة.

 $\int_0^4 (-x^2 + 4x + 6) \ dx$ على الفترة [0, 4]؛ أي $y = -x^2 + 4x + 6$ (b) أو لًا: أو جد الدالة الأصلية.

$$\int (-x^2 + 4x + 6) dx$$

$$= -\frac{x^{2+1}}{2+1} + \frac{4x^{1+1}}{1+1} + \frac{6x^{0+1}}{0+1} + C$$

$$= -\frac{x^3}{3} + 2x^2 + 6x + C$$

الآن: احسب قيمة الدالة الأصلية عند الحدين الأعلى والأدنى للتكامل، ثم أوجد الفرق.

النظرية الأساسية في التفاضل والتكامل
$$\int_0^4 (-x^2 + 4x + 6) \, dx = -\frac{x^3}{3} + 2x^2 + 6x + C \Big|_0^4$$

$$= \left(-\frac{(4)^3}{3} + 2(4)^2 + 6(4) + C \right) - \left(-\frac{(0)^3}{3} + 2(0)^2 + 6(0) + C \right)$$

أي أن مساحة المنطقة المحصورة بين منحنى $x + 4x + 6 + y = -x^2 + 4$ والمحور x على الفترة x + 4x + 6 = 0 هي 34.67 وحدة مربعة تقريبًا.

🔽 تحقق من فهمك

احسب کل تکامل محدد مما یأتي:
$$\int_{1}^{2} (16x^{3} - 6x^{2}) dx$$
 (4B
$$\int_{2}^{5} 3x^{2} dx$$
 (4A)

 $\approx 34.67 - 0 \approx 34.67$

لاحظ أنه عند حساب قيمة الدالة الأصلية عند الحدين الأعلى والأدني للتكامل ، وحساب الفرق بين القيمتين ، فإن C لن تظهر في الناتج؛ وذلك لأن C موجودة في كلتا الدالتين الأصليتين، فإن الفرق بين قيمتي C يساوي صفرًا. التعمليت لذا فإنه لحساب تكامل محدد باستعمال النظريّة الأساسية في التفاضل والتكامل يمكنك إهمال الثابت C، وعدم كتابته المست 2021 - 1443 في الدالة الأصلية.

مـثال 5

صحيح أنه يمكن تجاهل

بعين الاعتبار عند حساب التكامل غير المحدد؛ لأنه

جزء من الدالة الأصلية.

الثابت C عند حساب التكامل المحدد، إلا أنه يجب أخذه

احسب كل تكامل مما يأتى:

$$\int (9x - x^3) \ dx$$
 (a)

هذا تكامل غير محدد. استعمل قواعد الدالة الأصلية لحسابه.

قواعد الدالة الأصلية
$$\int (9x-x^3)\ dx = \frac{9x^{1+1}}{1+1} - \frac{x^{3+1}}{3+1} + C$$
 بسّط
$$= \frac{9}{2}x^2 - \frac{x^4}{4} + C$$

$$\int_2^3 (9x-x^3)\ dx \ (\mathbf{b}$$

التكاملات المحددة وغير المحددة

هذا تكامل محدد. احسب قيمة التكامل باستعمال قيمة الدالة الأصلية عند الحدين الأعلى والأدني.

النظرية الأساسية في التفاضل والتكامل
$$\int_2^3 (9x - x^3) \, dx = \left(\frac{9}{2} \, x^2 - \frac{x^4}{4}\right) \Big|_2^3$$

$$= \left(\frac{9}{2} \, (3)^2 - \frac{(3)^4}{4}\right) - \left[\frac{9}{2} \, (2)^2 - \frac{(2)^4}{4}\right]$$

$$= 20.25 - 14 = 6.25$$

🚺 تحقق من فهمك

احسب كل تكامل مما يأتى:

$$\int (6x^2 + 8x - 3) \, dx$$
 (5A)

$$\int_{1}^{3} (-x^4 + 8x^3 - 24x^2 + 30x - 4) \, dx$$
 (5B)

لاحظ أن التكامل غير المحدد يُعطي الدالَّة الأصلية، في حين لا يُعطي التكامل المحدد الدالة الأصلية بصورة صريحة، بل هو الفرق بين قيمتي الدالة الأصلية عند الحدين الأعلى والأدني. أي أن التكامل غير المحدد يعطي دالة، وهي الدالة الأصلية، ويمكن استعمالها لإيجاد مساحة المنطقة تحت منحني الدالة بين أي حدين أعلى وأدني؛ ليصبح التكامل عندها محددًا.

مـثال 6 التكاملات المحددة

 $\int_0^{0.5} 360x \ dx$ يُعطى الشغل اللازم لشد نابض ما مسافة $0.5\,\mathrm{m}$ من موضعه الطبيعي بالتكامل مثل ما قيمة الشغل اللازم لشد النابض مقيسًا بوحدة الجول $0.5\,\mathrm{m}$

احسب قيمة التكامل المحدد.

قاعدة ضرب دالة القوة في عدد ثابت ، والنظرية الأساسية في التفاضل والتكامل
$$\int_0^{0.5} 360x\ dx = 180x^2 \left|_0^{0.5}\right|$$

$$a = 0\ , b = 0.5 \qquad \qquad = 180 (0.5)^2 - 180 (0)^2$$

$$= 45 - 0 = 45$$

أي أن الشغل اللازم هو 45J .

🚺 تحقق من فهمك

أوجد الشغل اللازم لشد نابض مسافة ما والمعطى بالتكامل في كل مما يأتي: $\int_{0}^{1.4} 512x \, dx$ (6B) $\int_{0}^{0.7} 476x \, dx \, (6A$

وزارة التعليم Ministry of Education 2021 - 1443

تدرب وحل المسائل

أوجد جميع الدوال الأصلية لكل دالّة مما يأتي: (المثالان 1,2)

$$f(x) = x^5$$
 (1)

$$f(z) = \sqrt[3]{z}$$
 (2)

$$q(r) = \frac{3}{4}r^{\frac{2}{5}} + \frac{5}{8}r^{\frac{1}{3}} + r^{\frac{1}{2}}$$
 (3

$$w(u) = \frac{2}{3}u^5 + \frac{1}{6}u^3 - \frac{2}{5}u$$
 (4

$$u(d) = \frac{12}{d^5} + \frac{5}{d^3} - 6 d^2 + 3.5$$
 (5

$$m(t) = 16 t^3 - 12 t^2 + 20 t - 11$$
 (6

7) سقوط حر: ارجع إلى فقرة "لماذا؟" في بداية الدرس. افترض أن القلم قد استغرق 2s حتى الوصول إلى سطّح الأرض. (مثالة)

.
$$s(t) = \int -32t \, dt$$
 أوجد دالة الموقع

.
$$s(t) = 0$$
 ، $t = 2s$ احسب قيمة C عندما (**b**

احسب كل تكامل مما يأتى: (المثالان 4,5)

$$\int (6m + 12m^3) dm$$
 (8)
$$\int_{1}^{4} 2 x^3 dx$$
 (9)

$$\int_{1}^{5} 2 x^{3} dx$$
 (9)

$$\int_{2}^{5} (a^2 - a + 6) \, da$$
 (10

$$\int_{1}^{3} \left(\frac{1}{2} h^2 + \frac{2}{3} h^3 - \frac{1}{5} h^4 \right) dh$$
 (11)

$$\int (3.4 t^4 - 1.2 t^3 + 2.3 t - 5.7) dt$$
 (12)

$$\int (14.2 \, w^{6.1} - 20.1 \, w^{5.7} + 13.2 \, w^{2.3} + 3) \, dw$$
 (13

- میث v(t) = -32t + 34 حیث تُعطی سرعة قفز حشرة بـ v(t) = -32t + 34 میث الزمن بالثواني، و v(t) السرعة المتجهة بالأقدام لكل ثانية. t
 - C للحشرة، ثم احسب قيمة الثابت S(t) للحشرة، ثم احسب قيمة الثابت s(t) = 0 فإن t = 0 بفر ض أنه عندما
 - b) أوجد الزمن من لحظة قفز الحشرة حتى هبوطها على سطح
- 15) هندسة: صمَّم مهندس مدخل بناية على شكل قوس يمكن وصفه ب $y = -\frac{x^2}{1575} + 4x$ بالأقدام. احسب مساحة المنطقة تحت القوس. (مثال 6)

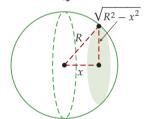
احسب كل تكامل مما يأتى:

$$\int_{-1}^{2} (-x^2 + 10) dx$$
 (17
$$\int_{-3}^{1} 3 dx$$
 (16
$$\int_{-1}^{1} (x^4 - 2x^3 - 4x + 8) dx$$
 (19
$$\int_{-2}^{-1} \left(\frac{x^5}{2} + \frac{5x^4}{4} \right) dx$$
 (18

$$\int_{-2}^{-3} (-x^2 - 9x - 10) dx$$
 (20)

مقذوفات: تُعطى سرعة مقذوف بـ
$$v(t) = -32t + 120$$
 ، حيث $v(t) = -32t + 120$ السرعة المتجهة بالأقدام لكل ثانية بعد t ثانية ، ويبلغ ارتفاعه $v(t)$. $3s$ بعد 228 ft

- a) أوجد أقصى ارتفاع يصله المقذوف.
- b) أوجد سرعة المقذوف عندما يصل إلى سطح الأرض.


احسب كل تكامل مما يأتى:

$$\int_{5}^{x} (10t^{4} - 12t^{2} + 5) dt$$
 (23)
$$\int_{x}^{2} (3t^{2} + 8t) dt$$
 (22)

$$\int_{-x}^{6} (-9t^2 + 4t) dt$$
 (25
$$\int_{3}^{2} (4t^3 + 10t + 2) dt$$
 (24)


$$\int_{2x}^{x+3} (3t^2 + 6t + 1) dt \ \mathbf{(27} \int_{x}^{x^2} (16t^3 - 15t^2 + 7) dt \ \mathbf{(26)}$$

28) حجم الكرة: يمكن إيجاد حجم كرة طول نصف قطرها R بقصها إلى حلقات دائرية من خلال مستويات رأسية متوازية ثم إجراء تكامل لحساب مساحات الحلقات الدائرية.

يبلغ طول نصف قطر كل حلقة $\sqrt{R^2-x^2}$ ، أي أن مساحة كل . $\pi(\sqrt{R^2-x^2})^2$ حلقة هي . أوجد $\int_{-R}^{R} (\pi R^2 - \pi x^2) dx$ أوجد

(29 مساحات: احسب مساحة المنطقة المحصورة بين منحنيي (f(x) $1 \le x \le 3$ والمحور x ، في الفترة g(x)

30) 5 تمثيلات متعددة: ستستكشف في هذه المسألة العلاقة بين قيمة تكامل دالة على فترة، ومساحة المنطقة المحصورة بين منحني

الدالة والمحور x ، وتأثير موقع الدالة بالنسبة لمحور x على إشارة

هندسيًّا: مَثِّل الدالة
$$f(x) = x^3 - 6x^2 + 8x$$
 بيانيًّا، وظلِّل (a) منطقة المحصورة بين $f(x)$ والمحور x ، في الفترة $x \leq 0$ المنطقة المحصورة بين والمحور x (a)

:حسب كلَّا من **(b** تحليليًّا: احسب كلًّا من
$$\int_0^2 (x^3 - 6x^2 + 8x) dx$$
 , $\int_2^4 (x^3 - 6x^2 + 8x) dx$

نفظيًا: أعطِ تخمينًا حول مساحة المنطقة الواقعة فوق أو تحت المحور
$$x$$
.

رافترة كاملة من خلال حساب **(d)** تحليليًّا أو جد التكامل على الفترة كاملة من خلال حساب
$$\int_0^4 (x^3-6x^2+8x)\,dx$$
 حساب
$$\left|\int_0^2 (x^3-6x^2+8x)\,dx\right| + \left|\int_2^4 (x^3-6x^2+8x)\,dx\right|$$

e لفظيًا: أعطِ تخمينًا حول الفرق بين قيمة التكامل على الفترة كاملة والمساحة الكلية.

مسائل مهارات التفكير العليا

تحدًّ: احسب قيمة $r = \int_{-\infty}^{\infty} \sqrt{r^2 - x^2} \, dx$ عدد ثابت. (31

تبرير: حَدِّد ما إذا كانت كل عبارة مما يأتي صحيحة دائمًا، أو صحيحة أحيانًا، أو غير صحيحة أبدًا. برِّ ر إجابتك:

$$\int_{a}^{b} f(x) \ dx = \int_{b}^{a} f(x) \ dx$$
 (32)

$$\int_{a}^{b} f(x) \ dx = \int_{-b}^{-a} f(x) \ dx$$
 (33)

$$\int_{a}^{b} f(x) \ dx = \int_{|b|}^{|a|} f(x) \ dx$$
 (34)

ون ،
$$n$$
 ، m ، نابتين n ، فإن اثبت أنه لأي عددين ثابتين $\int_a^b (n+m) \ dx = \int_a^b n \ dx + \int_a^b m \ dx$

تبرير: صف قيم
$$f(x)$$
 , $\sum_{i=1}^{n} f(x_i) \Delta x$, $\int_{a}^{b} f(x) dx$ عندما يقع (36) . $a \leq x \leq b$ التمثيل البياني للدالة f تحت المحور f في الفترة

37) اكتب: بيِّن لماذا يمكننا إهمال الحد الثابت C في الدالة الأصلية عند حساب التكامل المحدد.

مراجعة تراكمية

استعمل النهايات لتقريب مساحة المنطقة المحصورة بين منحنى الدالة والمحور x ، والمعطاة بالتكامل في كل مما يأتي: (المدرس 4-5)

$$\int_0^6 (x+2) \, dx$$
 (39
$$\int_{-2}^2 14 \, x^6 \, dx$$
 (38)

استعمل قاعدة القسمة لإيجاد مشتقة كل دالة مما يأتى: (الدرس 4-4)

$$j(k) = \frac{k^8 - 7k}{2k^4 + 11k^3}$$
 (40

$$g(n) = \frac{2n^3 + 4n}{n^2 + 1}$$
 (41)

(4-2 الدرس
$$a$$
:، فأوجد قيمة a : الدرس (4-2 الدرس a :) اإذا كان (42 الدرس (4-2 الدرس)) الدرس (4-2 الدرس)

أوجد معادلة ميل منحنى كل دالة مما يأتي عند أي نقطة عليه: (الدرس 4-3)

$$y = x^2 + 3$$
 (43)

$$y = x^3$$
 (44)

تدريب على اختبار

९ k أوذا كان ،
$$\int_{0}^{2} \mathbf{k} \, x \, dx = 6$$
 إذا كان (45)

- 2 **B**
- 3 C
- 4 **D**

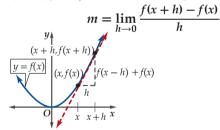
2021 - 1443

179

ملخص الفصل

مفاهيم أساسية

تقدير النهايات بيانيًا (الدرس 1-4)


- تكون نهاية f(x) عندما تقترب x من x موجودة ، إذا وفقط إذا كانت النهايتان من اليمين واليسار موجودتين ومتساويتين.
- تكون نهاية f(x) عندما تقترب x من عير موجودة إذا اقتربت f(x) من قيمتين مختلفتين عند اقتراب قيم x من العدد a من اليسار ومن اليمين، أو عندما تزداد قيم a من اليسار أو اليمين أو كليهما، أو عندما تتذبذ a عن العدد a من العدد a عندما تتذبذ a عند قيم عند قيم a عند قيم a عند قيم a عند قيم a عند قيم عند قيم

حساب النهايات جبريًا (الدرس 2-4)

- يمكن إيجاد نهايات كثيرات الحدود والدوال النسبية عادةً من خلال التعويض المباشر.
- إذا توصلت إلى الصيغة غير المحددة $\frac{0}{0}$ عند حساب نهاية دالة نسبية، فبَسِّط العبارة جبريًا من خلال تحليل كل من البسط والمقام أو إنطاق البسط أو المقام، ثم اختصار العوامل المشتركة.

المماس والسرعة المتجهة (الدرس 3-4)

مُعدّل التغيّر اللحظي للدالة f عند النقطة (x,f(x)) هو ميل المماس m عند النقطة (x,f(x)) ، ويُعطى بالصيغة

المشتقة (الدرس 4-4)

يُرمز لمشتقة $f'(x) = f(x) = x^n$ بالرمز f'(x)، وتُعطى بالصيغة $f'(x) = nx^{n-1}$ عدد حقيقي.

المساحة تحت المنحني والتكامل (الدرس 5-4)

f(x) تُعطى مساحة المنطقة المحصورة بين منحنى الدالة ullet

والمحور x بالصيغة

مین
$$a$$
 ، b مین ، $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$

الحدان الأعلى والأدنى للتكامل ،

$$\Delta x = \frac{b-a}{n}, x_i = a + i\Delta x$$

النظرية الأساسية في التفاضل والتكامل (الدرس 6-4)

- الدالة الأصلية له $f(x)=x^n$ هي F(x) وتُعطَى بالصيغة $F(x)=x^n$ ميث $F(x)=x^{n+1}+C$ عدد ثابت
 - إذا كانت F(x) دائة أصلية للدالة المتصلة f(x)، فإن $\int_{a}^{b} f(x) \ dx = F(b) F(a)$

المفردات

المؤثر التفاضلي ص 156 النهاية من جهة واحدة ص 130 التجزيء المنتظم ص 166 النهاية من جهتين ص 130 التكامل المحدد ص 167 التعويض المباشر ص 139 الحد الأدنى ص 167 الصيغة غير المحددة ص 140 الحد الأعلى ص 167 المماس ص 149 مُعدل التغيّر اللحظي ص 149 مجموع ريمان الأيمن ص 167 التكامل ص 167 قسمة الفرق ص 149 السرعة المتجهة اللحظية ص 151 الدالة الأصلية ص 173 التكامل غير المحدد ص 174 المشتقة ص 156 النظرية الأساسية في التفاضل الاشتقاق ص 156 والتكامل ص 175 المعادلة التفاضلية ص 156

اختسر مضرداتك

اختر المفردة المناسبة لكل عبارة مما يأتى:

- 1) ميل المنحنى غير الخطي عند نقطة عليه هو_____ ، والذي يمكن تمثيله بميل مماس منحنى الدالة عند تلك النقطة.
- xيمكن إيجاد مساحة المنطقة المحصورة بين منحنى دالة والمحور يستعمال ______.
- 3) يمكن إيجاد نهايات دوال كثيرات الحدود والدوال النسبية باستعمال معرفة السبية لا يساوي صفرًا عند النقطة التي تُحسب عندها النهاية .
 - f(x) فإن f(x) ، فإن f'(x) = f(x) فإن (4)
 - $\frac{0}{0}$ يُسمى ناتج التعويض في النهايات على الصورة (5
 - إذا سُبقت دالة بـ _____ ، فإن ذلك يعني إيجاد مشتقة الدالة . _____ . و الدالة . ______ . و الدالة . ______ . و الدالة . _____ . و الدالة . ______ . و الدالة . _______ . و الدالة . ________ . و الدالة . _________ . و الدالة . ________ . و الدالة . ________ . و الدالة . _______ . و الدالة . ________ . و الدالة . ________ . و الدالة . _________ . و الدالة . ____________ . و الدالة . ____________ . و الدالة . _______________ . و الدالة . ______________________
 - 8) يطلق على السرعة المتجهة عند لحظة زمنية محددة _____.

مرارة التعليم Ministry of Education 2021 - 1443

مراجعة الدروس

4-1

تقدير النهايات بيانيًّا (الصفحات136 - 128)

قدّر كل نهاية مما يأتي باستعمال التمثيل البياني، ثم عزّز إجابتك باستعمال جدول قيم:

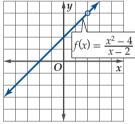
$$\lim_{x \to 3} (2x - 7)$$
 (9

$$\lim_{x \to 1} (0.5x^4 + 3x^2 - 5)$$
 (10

قدِّر كل نهاية مما يأتي:

$$\lim_{x \to 2^+} \frac{x^2 + x - 6}{x - 2}$$
 (11)

$$\lim_{x \to 4} \frac{x^2 + x + 20}{x - 4}$$
 (12)


$$\lim_{x \to 4} \frac{9}{x^2 - 8x + 16}$$
 (13)

$$\lim_{x \to 2} \frac{x^2 - 7x - 10}{x - 2}$$
 (14)

مـثال 1

قدّر $\frac{x^2-4}{x-2}$ باستعمال التمثيل البياني، ثم عزِّز إجابتك باستعمال جدول قيم.

التحليل بيانيًّا: يُبيّن التمثيل البياني للدالة $f(x) = \frac{x^2 - 4}{x - 2}$ أدناه أنه كلما اقتربت قيم x من العدد 2 ، فإن قيم f(x) المقابلة تقترب من 4 ؛ لذا فإن بإمكاننا تقدير $\frac{x^2 - 4}{x - 2}$ بالعدد 4 .

التعزيز عدديًا: كوّن جدول قيم باختيار قيم x القريبة من العدد 2 من كلا الجهتين.

— 2 تقترب من 2 →					— x تقترب من 2 → x			
x	1.9	1.99	1.999	2	2.001	2.01	2.1	
f(x)	3.9	3.99	3.999		4.001	4.01	4.1	

يبيِّن نمط قيم f(x)، أنه كلما اقتربت قيم x من العدد 2 من اليسار ومن اليمين، فإن قيم f(x) تقترب من العدد 4.

حساب النهايات جبريًا (الصفحات 146-137)

استعمل خصائص النهايات لحساب كل نهاية مما يأتي:

$$\lim_{x \to 5} \frac{x^2 + 2x + 10}{x}$$
 (15)

4-2

$$\lim_{x \to -1} (5x^2 - 2x + 12)$$
 (16)

احسب كل نهاية مما يأتي بأستعمال التعويض المباشر إذا كان ممكنًا، وإلا فاذكر السبب.

$$\lim_{x \to 25} \frac{x^2 + 1}{\sqrt{x} - 5}$$
 (17)

$$\lim_{x \to 2} \left(-3x^3 - 2x^2 + 15 \right)$$
 (18)

احسب كل نهاية مما يأتي:

$$\lim_{x \to -2} \frac{x+2}{x^2 - 2x - 8}$$
 (19)

$$\lim_{x \to \infty} (2 - 4x^3 + x^2)$$
 (20

مـثال 2

احسب كل نهاية مما يأتي باستعمال التعويض المباشر إذا كان ذلك مكنًا، وإلا فاذكر السبب.

$$\lim_{x \to 2} (2x^3 - x^2 + 4x + 1)$$
 (a

بما أن هذه نهاية كثيرة حدود؛ لذا يمكننا حسابها باستعمال التعويض المباشر.

$$\lim_{x \to 2} (2x^3 - x^2 + 4x + 1) = 2(2)^3 - 2^2 + 4(2) + 1$$

$$= 16 - 4 + 8 + 1 = 21$$

$$\lim_{x \to -4} \frac{2x - 7}{2 - x^2}$$
 (b

بماً أن هذه نهاية دالة نسبية مقامها ليس عفرًا عندما x = -4 لذا يمكننا حسابها باستعمال التعويض المباشر.

$$\lim_{x \to -4} \frac{2x - 7}{2 - x^2} = \frac{2(-4) - 7}{2 - (-4)^2} = \frac{-8 - 7}{2 - 16} = \frac{15}{14}$$

4-3

المماس والسرعة المتجهة (الصفحات 154-149)

أوجد ميل مماس منحنى كل دالة مما يأتي عند النقاط المعطاة:

$$y = 6 - x$$
, $(-1, 7)$, $(3, 3)$ (21)

$$y = x^2 + 2$$
, $(0, 2)$, $(-1, 3)$ (22)

أوجد معادلة ميل منحني كل دالةٍ مما يأتي عند أي نقطة عليه:

$$y = -x^2 + 3x$$
 (23)

$$y = x^3 + 4x$$
 (24)

تمثِّل s(t) في كل مما يأتي موقع جسم بالأقدام بعد t ثانية . أوجد سرعة الجسم المتجهة اللحظية عند الزمن المعطى:

$$s(t) = 15t - 16t^2$$
, $t = 0.5$ (25)

$$s(t) = -16t^2 - 35t + 400$$
, $t = 3.5$ (26)

تمثِّل h(t) في كل مما يأتي مسار جسم متحرك . أوجد السرعة المتجهة اللحظية v(t) للجسم عند أي زمن:

$$h(t) = 8 - 2t^2 + 3t$$
 (28 $h(t) = 12t^2 - 5$ (27)

مـثال 3

. (2, 4) عند النقطة $y = x^2$ عند النقطة

$$m = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 $x = 2$ $= \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$ $= \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$ $= \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h}$ $= \lim_{h \to 0} \frac{4+4h+h^2-4}{h}$ $= \lim_{h \to 0} \frac{h(4+h)}{h}$ $= \lim_{h \to 0} (4+h)$ $= \lim_{h \to 0} (4+h)$ $= 2$

. 4 هو (2, 4) عند النقطة $y = x^2$ هو أي أن ميل مماس منحنى

4-4 المشتقات (الصفحات 153–156)

أوجد مشتقة كل دالة مما يأتي باستعمال النهايات ، ثم احسب قيمة المشتقة عند النقاط المعطاة.

$$g(t) = -t^2 + 5t + 11$$
, $t = -4$, 1 (29)

$$m(j) = 10j - 3$$
, $j = 5$, -3 (30)

أوجد مشتقة كل دالة مما يأتي:

$$z(n) = 4 n^2 + 9 n$$
 (32 $p(v) = -9 v + 14$ (31

$$g(h) = 4 h^{\frac{3}{4}} - 8 h^{\frac{1}{2}} + 5$$
 (34 $t(x) = -3 \sqrt[5]{x^6}$ (33)

استعمل قاعدة مشتقة القسمة؛ لإيجاد مشتقة كل دالة مما يأتي:

$$m(q) = \frac{2q^4 - q^2 + 9}{q^2 - 12}$$
 (36 $f(m) = \frac{5 - 3m}{5 + 2m}$ (35

مـثال 4

$$h(x) = \frac{x^2 - 5}{x^3 + 2}$$
 أوجد مشتقة

افترض أن
$$f(x) = x^2 - 5$$
 , $g(x) = x^3 + 2$ لذا، $f(x)$, $g(x)$ أو جد مشتقة كل من $h(x) = f(x)/g(x)$

من الفرض
$$f(x) = x^2 - 5$$

قواعد مشتقات القوة والدالة الثابتة
$$f'(x)=2x$$

من الفرض
$$g(x) = x^3 + 2$$

قواعد مشتقات القوة والدالة الثابتة
$$g'(x)=3x^2$$

.
$$h(x)$$
 استعمل $f(x), f'(x), g(x), g'(x)$ لإيجاد مشتقة

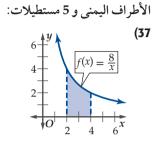
$$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$
 قاعدة مشتقة القسمة
$$= \frac{2x(x^3 + 2) - (x^2 - 5) 3x^2}{(x^3 + 2)^2}$$
 $= \frac{-x^4 + 15x^2 + 4x}{(x^3 + 2)^2}$

مـثال 5

استعمل النهايات لإيجاد مساحة المنطقة المحصورة بين منحني . $\int_{0}^{2} 2x^{2} dx$ والمحور x ، في الفترة [0, 2] أو $y = 2x^{2}$

$$\Delta x$$
 صيغة $\Delta x = \frac{b-a}{n}$
 $b=2$, $a=0$ $\Delta x = \frac{2-0}{n} = \frac{2}{n}$
 $a=0$, $\Delta x = \frac{2}{n}$ $x_i = 0 + i\frac{2}{n} = \frac{2i}{n}$

$$x_i = \frac{2i}{n}, \Delta x = \frac{2}{n} \int_0^2 2x^2 dx = \lim_{n \to \infty} \sum_{i=1}^n 2\left(\frac{2i}{n}\right)^2 \left(\frac{2}{n}\right)^2$$


بسّط
$$= \lim_{n \to \infty} \frac{4}{n} \left(\sum_{i=1}^{n} \frac{4i^2}{n^2} \right)$$

$$= \lim_{n \to \infty} \frac{4}{n} \left(\frac{4}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} \right)$$

$$= \lim_{n \to \infty} \left(\frac{8(2n^2 + 3n + 1)}{3n^2} \right)$$

اخرج عاملًا مشتركًا،
$$=\lim_{n\to\infty}\left[\frac{8}{3}\cdot\left(2+\frac{3}{n}+\frac{1}{n^2}\right)\right]$$
 خصائص النهایات
$$=\frac{16}{3}\approx 5.33$$

 Δx صيغة $\Delta x = \frac{b-a}{n}$

استعمل النهايات؛ لتقريب مساحة المنطقة المحصورة بين منحنى الدالة والمحور x ، والمعطى بالتكامل المحدد في كل مما يأتي:

قرِّب مساحة المنطقة المظللة تحت منحنى كل دالة مما يأتي باستعمال

$$\int_{1}^{2} 2x^{2} dx$$
 (39)

$$\int_0^3 (2x^3 - 1) \, dx$$
 (40)

$$\int_{0}^{2} (x^{2} + x) dx$$
 (41)

$$\int_{1}^{4} (3x^{2} - x) dx$$
 (42)

4-6

النظرية الأساسية في التفاضل والتكامل (الصفحات 179-173)

أوجد جميع الدوال الأصلية لكل دالة مما يأتي:

$$f(x) = \frac{4}{x^5}$$
 (a

أعد كتابة الدالة
$$f(x) = 4x^{-5}$$
 المعطاة بقوة سالية

قاعدة ضرب دالة القوة
$$F(x)=rac{4x^{-5+1}}{-5+1}+C$$
 في عدد ثابت
$$=x^{-4}+C=-rac{1}{x^4}+C$$
 $f(x)=x^2-7$ (b

الدالة المعطاة
$$f(x)=x^2-7$$

الدالة المعطاة $=x^2-7x^0$

$$F(x) = \frac{x^{2+1}}{2+1} - \frac{7x^{0+1}}{0+1} + C$$

$$= \frac{1}{3}x^3 - 7x + C$$

x أعد كتابة الدالة بدلالة قوى

خصائص النهايات

أوجد جميع الدوال الأصلية لكل دالة مما يأتي:

$$g(n) = 5n - 2$$
 (43)

$$r(q) = -3q^2 + 9q - 2$$
 (44)

$$m(t) = 6t^3 - 12t^2 + 2t - 11$$
 (45)

$$p(h) = 7h^6 + 4h^5 - 12h^3 - 4$$
 (46)

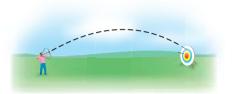
احسب كل تكامل مما يأتى:

$$\int 8x^2 dx$$
 (47)

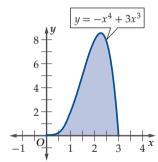
$$\int (2x^2 - 4) \, dx$$
 (48)

$$\int_{3}^{5} (2x^2 - 4 + 5x^3 + 3x^4) \, dx$$
 (49)

$$\int_{1}^{4} (-x^{2} + 4x - 2x^{3} + 5x^{5}) dx$$
 (50)


تطبيقات ومسائل

- عدد الحيوانات P في محميَّة طبيعية بالمئات بعد (51 حيوانات: يُعطى عدد الحيوانات P في محميَّة طبيعية بالمئات بعد $t \geq 5$ سنة بالدالة $t \geq 5$ ميث $t \geq 5$ ميث $t \geq 5$ (14درس (4-1)
 - a أوجد العدد التقريبي للحيوانات في المحميَّة بعد 5 سنوات.
 - $\lim_{t\to\infty} P(t)$ أوجد **(b**
 - راك قديم المان تحفة فنية يزداد سعرها كل سنة. المدى سلمان تحفة فنية يزداد سعرها كل سنة المدرض أن الدالة $v(t) = \frac{800t}{4t+19}$ تمثّل سعر التحفة بعد t سنة بمئات الريالات. (المدرس 1-4)
 - . $0 \le t \le 10$ استعمل الآلة البيانية لتمثيل الدالة في الفترة (10 **(a**
 - استعمل التمثيل البياني في الفرع **a** لتقريب سعر التحفة عندما . t = 3 , 6 , 10
 - . $\lim_{t \to \infty} v(t)$ استعمل التمثيل البياني في الفرع (د
 - d) وضِّح العلاقة بين نهاية الدالة وسعر التحفة.
- و) بعد 10 سنوات، قدَّم أحد المعارض الفنية عرضًا لشراء التحفة من سلمان بسعر 30000 ريال، هل من الأفضل بيعها بهذا السعر؟ برِّر إجابتك.
- را تمثّل سعر سلعة $v(t)=\frac{450}{5+25(0.4)^t}$ تمثّل سعر سلعة افترض أن الدالة مبيعات: افترض الدالة مبيعات: ما بالريالات بعد t سنة.
 - a) أكمل الجدول أدناه:


3	2	1	0	السنة
				السعر

- . $0 \le t \le 10$ استعمل الآلة البيانية لتمثيل الدالة في الفترة (**b**
- استعمل التمثيل البياني لتقدير v(t) استعمل التمثيل البياني لتقدير (v(t)
 - d) وضّح العلاقة بين نهاية الدالة وسعر السلعة.
- **54) صواريخ:** أُطلق صاروخ رأسيًّا إلى أعلى بسرعة 150 ft/s. افترض أن ارتفاع الصاروخ h(t) بالأقدام بعد t ثانية يُعطى بالدالة $h(t) = -16t^2 + 150t + 8.2$
 - . أوجد السرعة المتجهة اللحظية v(t) للصاروخ.
 - **b**) ما سرعة الصاروخ بعد 1.5s من إطلاقه؟
 - متى يصل الصاروخ إلى أقصى ارتفاع؟
 - d) ما أقصى ارتفاع يصل إليه الصاروخ؟

رماية: أطلق محمد سهمًا بسرعة 35 ft/s باتجاه هدف. افترض أن ارتفاع السهم h بالأقدام بعد t ثانية من إطلاقه مُعطى بالدالة $h(t) = -16t^2 + 35t + 1.5$

- . اكتب معادلة السرعة المتجهة اللحظية v(t) للسهم (a
 - b ما سرعة السهم بعد 0.5/s من إطلاقه؟
 - c متى يصل السهم إلى أقصى ارتفاع؟
 - d ما أقصى ارتفاع يصل إليه السهم؟
- تصميم: يقوم مصمم ألبسة رياضية بعمل شعار جديد يشبه المنطقة المظللة تحت المنحنى أدناه؛ حيث سيقوم بخياطة هذا الشعار على قمصان لاعبي فريق رياضي ، ما مقدار القماش الذي يحتاج إليه لعمل 50 شعارًا إذا كانت x بالبوصات؟ (الدرس 6-4)

- **57)** ضفادع: تمثّل الدالة 20+20=-32 سرعة قفز ضفدع بالأقدام لكل ثانية ، حيث t الزمن بالثواني. (الدرس 4-4)
- t=0 أوجد موقع الضفدع s(t)=0، على فرض أن (a
 - b) ما الزمن الذي يستغرقه الضفدع في الهواء عند قفزه؟
- روغ على ارتفاع 20 ft طيور: سقطت حبة قمح من منقار حمامة تطير على ارتفاع v(t) = -32t الزمن وتُعطى سرعة سقوط الحبة بالدالة v(t) عبالأقدام لكل ثانية. (المدرس 4-6)
 - أوجد موقع الحبة s(t) عند أي زمن.
- b) أوجد الزمن الذي تستغرقه الحبة حتى تصل إلى سطح الأرض. لير

Ministry of Education 2021 - 1443

قدر كل نهاية مما يأتى:

$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$
 (2
$$\lim_{x \to 0^+} \sqrt{x + 4} - 8$$
 (1

$$\lim_{x \to \infty} x^3 + 5x^2 - 2x + 21$$
 (4
$$\lim_{x \to 7} \frac{6}{x - 7}$$
 (3

5) الكترونيات: يُعطى متوسط تكلفة إنتاج جهاز إلكتروني بالريال عند إنتاج
$$x$$
 جهاز بالدالة x جهاز بالدالة عند إنتاج x

- احسب نهاية الدالة عندما تقترب x من المالانهاية.
 - b) فَسِّر الناتج في الفرع a.

احسب كل نهاية مما يأتي باستعمال التعويض المباشر إذا كان ممكنًا، وإلا فاذكر السبب:

$$\lim_{x \to 9} (2x^3 - 12x + 3)$$
 (7)
$$\lim_{x \to 5} \frac{x^2}{\sqrt{x - 4} - 2}$$
 (6)

8) نادِ ریاضي: تُمثّل الدالة
$$\frac{2000t^2+4}{1+10t^2}$$
 عدد المشترکین في نادِ ریاضي بعد t یوم من افتتاحه.

- a) ما عدد المشتركين في البداية؟
- b) ما أكبر عدد ممكن لمشتركي النادي؟

احسب كل نهاية مما يأتي (إن وجدت):

$$\lim_{x \to \infty} (2x^3 - 8x^2 - 5)$$
 (10
$$\lim_{x \to \infty} (x^2 - 7x + 2)$$
 (9

$$\lim_{x \to \infty} \frac{\sqrt{25 + x} - 4}{x}$$
 (12
$$\lim_{x \to \infty} \frac{2x^3 - x - 1}{-x^4 + 7x^3 + 4}$$
 (11

$$\frac{1}{x} \lim_{x \to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x}$$
 اختیار من متعدد: ما قیمة $\frac{1}{9}$ C $-\frac{1}{9}$ A

أوجد ميل مماس منحنى كل دالةٍ مما يأتى عند النقاط المعطاة:

$$y = x^2 + 2x - 8$$
, $(-5, 7)$, $(-2, -8)$ (14)

$$y = \frac{4}{x^3} + 2$$
, $(-1, -2)$, $\left(2, \frac{5}{2}\right)$ (15)

$$y = (2x + 1)^2$$
, $(-3, 25)$, $(0, 1)$ (16)

أوجد السرعة المتجهة اللحظية v(t) لجسم يُعطى موقعه عند أي زمن بالدالة h(t) في كل مما يأتي:

$$h(t) = 9t + 3t^2$$
 (17)

$$h(t) = 10t^2 - 7t^3$$
 (18)

$$h(t) = 3t^3 - 2 + 4t$$
 (19)

أوجد مشتقة كل دالة مما يأتى:

$$f(x) = -3x - 7$$
 (20)

$$b(c) = 4c^{\frac{1}{2}} - 8c^{\frac{2}{3}} + 5c^{\frac{4}{5}}$$
 (21)

$$w(y) = 3y^{\frac{4}{3}} + 6y^{\frac{1}{2}}$$
 (22)

$$g(x) = (x^2 - 4)(2x - 5)$$
 (23)

$$h(t) = \frac{t^3 + 4t^2 + t}{t^2}$$
 (24)

- (25) صناعة: تُعطى التكلفة الحدّية c بالريال لإنتاج x كرة قدم يوميًّا c(x) = 15 0.005x بالدالة
 - a) أوجد دالة تمثّل التكلفة الحقيقية .
- **b** أوجد تكلفة زيادة الإنتاج اليومي من 1500 كرة إلى 2000 كرة.

استعمل النهايات؛ لتقريب مساحة المنطقة المحصورة بين منحنى الدالة والمحور x ، والمعطاة بالتكامل المحدد في كل مما يأتي:

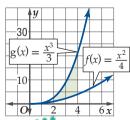
$$\int_{1}^{4} (x^{2} - 3x + 4) dx$$
 (26)

$$\int_{2}^{8} 10 \ x^4 \ dx$$
 (27)

$$\int_{2}^{5} (7 - 2x + 4x^{2}) dx$$
 (28)

أوجد جميع الدوال الأصلية لكل دالَّة مما يأتي:

$$d(a) = 4 a^3 + 9 a^2 - 2 a + 8$$
 (29)


$$w(z) = \frac{3}{4}z^4 + \frac{1}{6}z^2 - \frac{2}{5}$$
 (30)

احسب كل تكامل مما يأتى:

$$\int (5x^3 - 6x^2 + 4x - 3) \, dx \quad (31)$$

$$\int_{1}^{4} (x^2 + 4x - 2) \, dx \quad (32)$$

g(x)، f(x) مساحة: ما مساحة المنطقة المحصورة بين منحنيي (33 مساحة: ما مساحة المنطقة المحصورة بين منحنيي في الفترة $2 \le x \le 4$ في الشكل أدناه؟

وحدة مساحة $\frac{5}{12}$ د وحدة مساحة $17\frac{5}{12}$ هساحة مساحة

وحدة مساحة $17\frac{1}{3}$ **B**

16 وحدة مساحة المساحة المساحة

الصيغ

	متجهات		
$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$	جمع متجهين في الفضاء	$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$	جمع متجهين في المستوى
$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$ = $\langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$	طرح متجهين في الفضاء	$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$	طرح متجهين في المستوى
$k\mathbf{a} = \langle ka_1, ka_2, ka_3 \rangle$	ضرب متجه في عدد حقيقي في الفضاء	$k\mathbf{a} = \langle ka_1, ka_2 \rangle$	ضرب متجه في عدد حقيقي في المستوى
$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$	الضرب الداخلي لمتجهين في الفضاء	$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$	الضرب الداخلي لمتجهين في المستوى
$\mathbf{t} \cdot (\mathbf{u} \times \mathbf{v}) = \begin{vmatrix} t_1 & t_2 & t_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$	الضرب القياسي للثلاثيات	$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$	الزاوية بين متجهين
		$ \mathbf{v} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	طول متجه
	$\mathbf{a} \times \mathbf{b} = (a_2 b_3 - a_3 b_2) \mathbf{i} - a_3 b_2 \mathbf{j} - a_3 b_2 $	$-(a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$	الضرب الاتجاهي لمتجهين في الفضاء

الإحداثيات القطبية

 $z = \frac{X - \mu}{\sigma}$

$z_1 z_2 = r_1 r_2 [\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2)]$	صيغة الضرب	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos (\theta_1 - \theta_2) + i \sin (\theta_1 - \theta_2) \right]$	صيغة القسمة
$z^{n} = [r(\cos \theta + i \sin \theta)]^{n} = r^{n}(\cos n\theta + i \sin n\theta)$	نظرية ديموافر	$\sqrt{{r_1}^2 + {r_2}^2 - 2r_1r_2\cos{(\theta_2 - \theta_1)}}$	المسافة بالصيغة القطبية
		$r^{\frac{1}{n}}\left(\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n}\right)$	الجذور المختلفة

الاحتمال والإحصاء

صيغة احتمال ذات حدين

 $P(X) = {}_{n}C_{x} p^{x} q^{n-x} = \frac{n!}{(n-x)!x!} p^{x} q^{n-x}$

2021

		النهايات		
	$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$	خاصية الفرق	$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$	خاصية الجمع
	$\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$	خاصية الضرب	$\lim_{x \to c} [kf(x)] = k \lim_{x \to c} f(x)$	خاصية الضرب في عدد حقيقي
	$\lim_{x \to c} [f(x)]^n = [\lim_{x \to c} f(x)]^n$	خاصية القوة	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} , \lim_{x \to c} g(x) \neq 0$	خاصية القسمة
Minis	السرعة السرعة السرعة المتجهة اللحظية المتجهة المتجهة $v_{avg} = \frac{f(b) - f(a)}{b-a}$ $v(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$	السرعة المتجهة	$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}, \lim_{x \to c} f(x) > 0$	خاصية الجذر النوني

صيغة الدرجة المعيارية (قيمة ع

الصيغ

المشتقات

قاعدة مشتقة

$$f'(x)=g'(x)\pm h'(x)$$
 فإن $f(x)=g(x)\pm h(x)$ إذا كان

المجموع أو الفرق
$$g(x) = g(x) \pm h(x)$$
 المجموع أو الفرق

إذا كان
$$x^n$$
 حيث $f(x) = x^n$ عدد حقيقي،
فإن $f'(x) = nx^{n-1}$.

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) g(x) - f(x) g'(x)}{[g(x)]^2}$$

$$\frac{d}{dx}\left[f(x)\,g(x)\right] = f'(x)\,g(x) + f(x)\,g'(x)$$

التكاملات

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

fمعكوس الدالة

b للأساس x

اللوغاريتم العشري

المتجه AB

المتجه a

مقدار المتجه a

الوسط لعينة

الوسط لمجتمع

مشتقة الدالة (x)

التكامل غير المحدد

f(x) الدالة الأصلية للدالة

التكامل المحدد

الحدث المتمم

A احتمال الحدث

A بشرط B

kالمجموع من n=1الى

الانحراف المعياري لعينة

الانحراف المعياري لمجتمع

 f^{-1}

 $\log_b x$

 $\log x$

 $\langle a, b \rangle$

a

S

f'(x)

F(x)

A'

P(A)

 $P(B \mid A)$

$$\int f(x) \, dx = F(x) + C$$

الرموز

Q

$$n$$
 مضروب العدد الصحيح الموجب $n!$

تبادیل
$$n$$
 مأخوذة r فی کل مرة nP_r

توافيق
$$n$$
 مأخوذة r في كل مرة n

مالانهایة
$$\infty$$

$$-\infty$$
 سالب مالانهاية

$$c$$
 من x من النهاية عندما تقترب النهاية عندما

دالة القيمة المطلقة
$$f(x) = |x|$$

الدالة متعددة التعريف
$$f(x) = \{$$

دالة أكبر عدد صحيح
$$f(x) = [x]$$